SEMESTER VI

(MC603) PRODUCTION MANAGEMENT

1. COURSE OBJECTIVES:

Any technician comes across various problems in manufacturing industry. They should have basic knowledge of how to apply techniques of industrial engineering and production management in various industry related problems so that production is achieved in efficient way and also customer satisfaction. The course is designed to develop necessary competencies in the students to apply the principles of work study and production management in selecting the most economic method for execution of work resulting in improving productivity of the organization.

2. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Course code &		Peri	ods/V	Veek	Total		Exan	nination	n Scheme	
course tit	tle	(iı	n hou	rs)	Hours	The Ma	ory rks	Pra M	actical [arks	Total Marks
(MC603 PRODUCT	5) TON	L	Т	Р	Н	ТН	TM	TW	PR/OR	
MANAGEM	IENT	3	-	2	5	75	25	25	-	125

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC603. CO1: Describe functions of production management.

MC603. CO2: Conduct Method study and Time study for a given production process.

MC603. CO3: Develop a plant layout for a given production process

.MC603. CO4: Prepare a production plan based on available data.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	1	1	1	1	1	2
CO2	2	1	1	1	1	1	1	1	3
CO3	2	2	2	3	2	2	2	2	3
CO4	2	3	3	2	2	2	2	2	3

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Outcomes]	
Unit	1		M	Thr	CO
1 PRODUCT	TVITY				
1.1 Introduction	on, Production and Produc	tivity, importance and	09	06	CO1
benefits of Pro	oductivity, Factors influen	cing productivity.			
1.2 Partial pro of PPM.	oductivity measures (PPM)), advantages and limitations			
1.3 Productivi	ity improvement technique	es.			
2 WORK ST	UDY				
2.1 Introducti	on, Work study procedure.	, Human consideration in	-		
Work Study,	work content, work study a	as a tool to improve	21	1/	CO1
productivity.			21	14	COI
2.2 Method st	udy				CO2
Introduction,	Objectives, Steps involved	l in Method study, Selection			
of job for met	hod study.				
2.3 Recording	; techniques: -				
Operation pro	cess chart, Flow process c	hart, Two handed Process			
Chart, Multip	le activity chart, SIMO cha	art, Flow and string			
diagram, Mici	co-motion study, Therbligs	s, Cycle and Chrono cycle			
graph, Princip	oles of motion economy.				
2.4 Work Mea	asurement				
Objectives, St	eps in time study, Types o	of Elements, Time Study			
equipment's (stop watch), Methods of ti	ming, Performance rating			
(methods not	to be taught), Allowance	es and its types, Simple			
Numerical on	computation of Standard t	time, Basic concept of Work			
sampling and	PMTS.				
3 PLANT LA	YOUT				
3.1 Objectives	s, Importance and Advanta	ages of Plant layout, factors	09	06	CO1
influencing Pl	ant layout.				CO3
3.2 Types of I	Plant Layout- Process, Pro	duct, Fix position layout,			000
comparisons,	advantages, limitations an	d applications.			CO4
4 PRODUCT	'ION PLANNING				
4.1 Introducti	on, scope, objectives and f	functions of management.			
Production sy	stem, Types of production	systems (Job order, Batch		1.0	Got
& Continuous	s).		21	13	COI
1.2 Productio	n Planning and control (Pl	PC):- Introduction,			CO3
Objectiv	e, Functions of PPC.				
4.3 Capacity I	Planning - Plant capacity, I	Machine capacity &			CO4
Machine selec	ction, Measures of capacity	y, Capacity requirement			

planning (CRP).			
4.4 Brief Introduction to Aggregate planning and Master production			
schedule (No Numerical).			
4.5 Material Requirement Planning (MRP) - Introduction,			
objectives.			
4.6 Process Planning (P.P): - Introduction, Factors affecting P.P,			
Steps in P.P			
4.7 Introduction to six sigma and Lean manufacturing			
5 FORECASTING			
	-		
5.1 Need of Demand forecasting.			
5.2 Classification of forecasting methods: -	15	00	CO1
 Judgemental Techniques: -Opinion survey method, Market 	15	09	CO4
research, Delphi technique.			
• Time Series Analysis: -Moving average forecasting,			
Exponential smoothing method.			
(simple Numericals on Moving average forecasting and Exponential			
smoothing methodology)			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of lectures	
1	Productivity	06	09
2	Work Study	14	21
3	Plant Layout	06	09
4	Production planning	13	21
5	Forecasting	09	15
	Total	48	75

Directorate of Technical Education, Goa State 8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1	Case Study on Productivity	3
2	Assignments on Method Study Techniques	5
3.	Numericals & one case study on stop watch Time Study	3
4.	Plant Layout	3
5.	Problems on Forecasting Methods	5
6.	Assignment on Production Planning	3
7.	Problems on Line Balancing	3
		25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Martand Telsang	Industrial Engineering and Production management	S. Chand
2	M. Mahajan	Industrial Engineering and Production management	Dhanpat Rai
3	O.P. Khanna	Industrial Engineering and Management	Dhanpat Rai & Sons
4	ILO	Work Study	ILO Geneva

(CC 602) BUSINESS COMMUNICATION

1. COURSE OBJECTIVES:

The students will able to:

- 1. Use speaking, writing and presentation skills to communicate effectively.
- 2. Develop business etiquettes, manners, grooming and improve personal appearance
- 3. Improve non-verbal forms of communication.

2. TEACHING AND EXAMINATION SCHEME

Semester	VI																			
Course code	&	Peri	iods/V	Veek	Total	Examination Scheme														
course title	•	(iı	n hou	rs)	Hours	Theory		Theory		Theory		Theory		Theory		Theory		Pra	nctical	Total
						Marks		Marks		Μ	arks	Marks								
(CC 602) BUSI	NESS	L	Т	Р	Н	TH TM		TW	PR/OR											
COMMUNICA	ΓΙΟΝ	-	-	2	2	-	-	25	25	50										

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC 602.CO1: Apply principles of effective communication in business environment

CC 602.CO2: Use ICT in business communication effectively.

CC 602.CO3: Demonstrate soft skills required in business environment.

CC 602.CO4: Prepare Technical Writing for various functions of business communication.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	0	1	0	1	2	2	0	1
CO2	2	2	2	1	2	2	3	1	2
CO3	2	2	2	1	2	2	3	1	2
CO4	1	1	1	1	2	3	3	0	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Phr =Practical hours CO = Course Outcomes			
Marks Unit	м	Phr	CO
	IVI	1 111	co
1 COMMUNICATION SKILLS AT WORKPLACE			
1.1 Principles of communication in business			
Importance of communication in a business organization, types of communication (formal and informal Internal and External Communication), Channels of communication: Vertical, Horizontal, Diagonal, Grapevine		04	CO1 CO2 CO3
1.2 Modern Office technology for communication:			CO4
email communication and sending text (etiquettes, components, tips for writing effective emails, spellcheck), internet and use of social media for work (to communicate, search for information about suppliers, specifications, networking, quick feedback, e-commerce, video conferencing)			
2 SEMINARS			
 2.1 Organization of seminars and workshops Organizers role: planning, objectives, topic selection, planning the date, time, venue, creating event organization material: creating facebook page, WatsApp group, invitations, advertisement on pamphlet, hand-outs, signage, name badges, registration form, press note, inviting key note speaker, schedule 2.2 Presentation Speakers role: Gathering relevant material, organization of the material, knowing the occasion and audience, preparing handouts for distribution, time management, interaction with audience, non-verbal communication. (Checklist of significant aspects of oral presentation to be provided) 		06	CO1 CO2 CO3 CO4
2.3 Role of audience Audience's role: Listening effectively and asking relevant questions, note taking			
3 TECHNICAL WRITING			
 3.1 Reports Understanding objective report writing, types of reports, parts of a formal report, illustrations inspection reports: procedure and format, Project Report 3.2 Business letters Sales letters: parts of sales letter complaint letters: elements of a complaint letter adjustment letters: elements of an adjustment letter 		10	CO1 CO2 CO3 CO4

3.3 Tenders		
procedure, Preparation, Types of tenders, Single tender, limited		
tender, Open tenders, government e tender, structure of a tender		
document, tender notice, terms and conditions, payment details,		
specification, documents to be submitted, drafting		
advertisement for tender.		
3.4 Generic notices, notice for meetings: purpose, format of notice		
for meeting, agenda, quorum and writing minutes		
4 JOB INTERVIEWS		
4.1 Job application and resume	06	CO1
draft job application and resume, draft letter of acceptance and	00	CO1
cold contact letter		CO_2
4. 2 Job interviews		C04
preparing for job interview, guidelines on facing job		
interviews, mock interviews		
5 SOFT SKILLS		
5.1Business etiquettes		
Importance of business etiquettes and manners, Tips for good		
business etiquettes	06	CO1
5.2 Nonverbal Communication		CO2
grooming, personal appearance, hygiene, deportment and body		CO3
language		CO4
5.3 Interpersonal skills		
Leadership skills, team work, active listening		
5.4 Critical thinking		
How to improve critical thinking, tips for critical thinking		
Total	32	-

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks 25
	Practical Title	
1.	Modern office technology	03
2.	Seminar	03
3.	Technical writing	10
4.	Job interviews	04
5	Soft skills	05
	Total	25
No	Class room Assignments	
1	Email communication	
2	Power point presentation	
3.	drafting seminar invites	
4.	Drafting hand outs for seminars	
5	Drafting sales letter	
6	Drafting complaint letters	
7	Drafting adjustment letters	

8	Drafting tender notice	
9.	Filling maintenance reports	
10.	Drafting inspection reports	
11	Drafting abstract	
12	Drafting notice for meetings	
13	Drafting agenda of meetings	
14	Drafting minutes of meeting	
15	Drafting resume and job application	
16	Drafting letter of acceptance	
17	Drafting cold contact cover letter	
18	Group discussions	
19	Debates	
20	Group presentations	

8. LEARNING RESOURCES

8.1 Reference books

S. No.	Author	Title of Books	Publishers
1	P.Prasad, Rajendra	The functional aspects of	s.k. kataria &sons
	k. Sharma	communication skills	
2	Pal & Rorualling	Essentials of business	Sultan chand & sons
		communication	
3	Grount Taylor	English conversation practice	Tata MCgraw Hill
4	R.C. Sharma &	Business Correspondence & report	Tata MCgraw Hill
	Krishna Mohan	writing	-

(MC602) MECHANICAL ENGINEERING PROJECT

1. COURSE OBJECTIVES:

After learning various mechanical engineering subjects, it is time to apply this knowledge to real life situations by study, analysis and modification of prevalent processes and machines, equipment or instrument, design simple mechanical systems, identify, define & solve problems, make new products, etc. This may be done individually or in groups. This is known as Project work. Thus, it is a purposeful time bound student activity to accomplish higher level cognitive, psychomotor and affective domain learning.

2. TEACHING AND EXAMINATION SCHEME:

Semester	VI									
Course code &			riods/	Week	Total		Examination So			
course ti	tle	((in ho	n hours) Credits Theory Practical Marks Marks		Total Marks				
MC602	2	L	Т	Р	Н	ТН	TM	TW	PR/OR	
MECHANI ENGINEEI PROJEC	ICAL RING CT	-	-	6	6	-	-	50	50	100

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC602.CO1: Identify the need for Project

MC602.CO2: Conduct literature Survey.

MC602.CO3: Apply Engineering Knowledge for finding optimal solution.

MC602.CO4: Develop the project

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	3	1	1	2	3	3	3	2
CO2	3	1	1	2	1	3	3	3	2
CO3	3	3	3	3	2	3	3	3	2
CO4	3	2	3	3	3	3	3	3	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Outcomes]	
Unit	1		Μ	Thr	CO
1. PRODUC Any part, ma controls, ener performance, other quality p	T MODIFICATION achine or equipment may rgy usage, work performative reduce cost, save energy, parameters, etc.	be studied for its operating ance in order to improve its increase output, improve any			CO1 CO2 CO3 CO4
2. PROCESS Any process may be studie operating exp improve its p improve any c	5 MODIFICATION in industry, commercial ed for its sequence of acti- penses, energy usage, w performance, reduce cost, other quality parameters, et	organisation or service sector vities, man power deployment, ork performance in order to save energy, increase output, tc.			CO1 CO2 CO3 CO4
3. LAY OUT The arrangen service secto movements o to improve its increase produ	MODIFICATION nent of facilities in industor or may be studied for f materials, men, operation s performance, reduce con- uction, improve any other	ry, commercial organisation or its usefulness in terms of n & maintenance, etc in order st, reduce transportation costs, quality parameters, etc.			CO1 CO2 CO3 CO4
4. PLANT M Study of a pl reduce down parameters, e storage, Milk water filtratio	IODIFICATION lant and its accessories in time, increase productio etc. The plant may of a Dairy, Mineral water, fo n, air conditioning, ventila	n order to improve efficiency, on, improve any other quality ony industry- Ice Plant, Cold od processing, ore processing, tion, etc.			CO1 CO2 CO3 CO4
5. MAKE NI Use creative tools, equipm energy efficie Make a new / computer soft	EW PART, MECHANIS ideas to make new object nent, etc. in order to red ncy, etc. modified part design or dr ware using any design soft	M OR PRODUCT t by using available materials, uce price, work performance, rawing with 3D modelling in tware.			CO1 CO2 CO3 CO4
		Total			

6. SPECIFICATION TABLE FOR PROJECT REVIEW

No	Project activity	Marks
1.	Selection area of project	5
2.	Literature survey, study of component, equipment, machine, plant, layout, etc.	5
3.	Defining problems, setting goals.	10
4.	Generating alternatives	5
5.	Developing a useful solution	10
6.	Testing a useful solution for feedback	5
7.	Report writing	10
	Total	50

7. PROJECT REVIEW SCHEDULE

SR.NO	REVIEW NO	WEEK OF SEMESTER
1	Review 1 (For Project Activities 1,2,3)	Second Week
2	Review 2(For Project Activities 4,5)	Seventh Week
3	Review 3(For Project Activities 5,6)	Twelfth Week
4	Review 4(For Project Activities 6,7)	Fifteenth Week

Note: In the project review assessment to be done based on

- 1) Presentation made by the students showing the progress of their project.
- 2) Involvement and contribution of individual student in project group.
- 3) Innovative ideas in project.
- 4) Project Guide should strictly follow the project review schedule.

(MC601) MACHINE DESIGN

1. COURSE OBJECTIVES:

While working in his/her field of work as a Mechanical engineer, student should have working knowledge of design principles which will assist him/her in designing simple and essential machine components as per requirements. This course will enable him to develop analytical abilities to give solutions to engineering design problems.

2. TEACHING AND EXAMINATION SCHEME:

Semester I											
Course code &	Periods/Week			Total	Examination Scheme						
course title	(in hours)			Hours	Theory		Practical		Total		
					Mar		ks Marl		Marks Marks		Marks
MC 601	L	Т	Р	H	TH	TM	TW	PR/OR			
MACHINE	4	-	2	6	75	25	25	25	150		
DESIGN											

* Note: 1) Standard data in respect of design of shafts, keys, screw threads and springs to be provided during Theory Examination.

2) Duration of Theory Examination is 04 hours.

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC601.CO1: Apply the steps in design of machine parts.

MC601.CO2: Select the bearing for a particular application from manufacturer's catalogue.

MC601.CO3: Use design data books and different codes.

MC601.CO4: Prepare detailed and assembly drawings of designed machine parts.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	1	1	1	2	3	1
CO2	3	2	3	2	2	1	2	3	1
CO3	3	2	2	3	2	1	2	3	1
CO4	3	3	3	2	2	2	2	3	1

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	Μ	T hr	CO
1 INTRODUCTION TO DESIGN			
1.1 Machine Design philosophy and procedures	10	8	CO1
1.2 General Considerations in Machine Design, Factor of safety and			CO2
factors governing the selection of factor of safety			
1.3 Fundamentals: - Types of loads, concept of stress, strain, Stress-			
Strain Diagram for ductile and brittle materials, Types of Stresses,			
such as Tension, Compression, Shear, Bearing Pressure Intensity,			
Crushing, Bending and Torsion, creep Strain and Creep Curve			
1.4 Fatigue, S-N curve, Endurance limit			
1.5 Stress Concentration- Causes & Remedies			
Properties of Engineering Materials, Designation of materials as per			
IS and introduction to International Standards & advantages of			
Standardization, use of design data book, use of standards in design			
and preferred numbers series.			
1.7 Theories of Elastic Failures-maximum Principal Stress theory			
and maximum shear stress theory.			
2 DESIGN OF SIMPLE MACHINE PARTS	10	10	001
2.1 knuckle joint	12	10	COI
2.2 Design of levers: -Right angled Bell crank Lever			CO_2
2.3 Design of C- Clamp, Offset link, arms of pulley.			CO4
BDESIGN OF SHAFTS, KEYS AND COUPLINGS, POWER SCREWS SPRINGS AND FASTENERS			
3 1 Types of shafts Shaft materials Standard sizes			
3.2 Design of shafts (Hollow and solid) using strength and rigidity			
criteria			
3.2 ASME code of design for line shafts supported between			
bearings with one or two pulleys in between.			
3.3 Design of sunk keys, Effect of keyways on strength of shaft			
3.4 Design of couplings- Muff coupling, Protected type Flange			
Coupling.			
3.5 Thread Profiles used for Power Screws, relative merits and	42	36	CO1
demerits of each			CO2
3.6 Torque required to overcome thread friction, self-locking and			CO3
overhauling conditions.			CO4
3.7 Efficiency of power screws, types of stresses induced			
3.8 Design of Screw Jack (limited to screw, nut, Head & lever)			
3.9 Classification and applications of springs, Spring-Terminology,			
Materials and specifications.			
Stresses in springs, Wahl's correction factor, Deflection of springs,			
Energy stored in springs			
3.10 Design of Helical tension and compression springs subjected to			
uniform applied loads, Leaf springs-construction and application			

3.11 Stresses in Screwed fasteners, bolts of uniform strength.			
3.12 Design of bolted joints subjected to eccentric loading a) load			
acting parallel to the axis of the bolt. B) load acting perpendicular to			
the axis of the bolt.			
3.13 Design of parallel and transverse fillet welds, axially loaded			
unsymmetrical section, Merits and Demerits of screwed and welded			
joints.			
4 ANTIFRICTION BEARINGS			
4.1 Classification of bearings-Sliding contact and rolling contact	06	05	CO1
4.2 Terminology of Ball bearings- life load relationship, basic static			CO3
load rating and basic dynamic load rating, limiting speed. Selection			
of ball bearings using manufacturer's catalogue.			
5 ERGONOMICS & AESTHETIC OF DESIGN			
5.1 Ergonomics of design- Man-Machine relationship. Design of	05	05	CO1
Equipment for control, environment & safety.			CO3
5.2 Aesthetic considerations regarding shape, Size, color & surface			
finish.			
Total	75	64	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to Design	08	10
2	Design of simple machine parts	10	12
3	Design of Shafts, keys and Couplings, Power Screws, Springs and fasteners	36	42
4	Antifriction bearings	05	06
5	Ergonomics & Aesthetic of design	05	05
	Total	64	75

Directorate of Technical Education, Goa State 8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practicals	Marks
1.	Assignment on selection of materials for given applications [at least five applications should be covered] using design data book. List the	03
	mechanical properties of material selected. 2 Hrs	
2.	Design of Socket & Spigot Cotter Joint. Prepare design report andassembly drawing indicating overall dimensions, tolerances, and surfacefinish. Also prepare bill of materials8 Hrs	06

3.	Design Project: Observe the system where transmission of power takes place through shaft, Keys, coupling, pulley and belt drive. Get the required information regarding power transmitted (power output by motoror engine etc.). By selecting suitable materials, design the shaft, key and coupling.	06
	should be completed in a group of five to six students) 8 Hrs	
4.	Design a power screw. Prepare design report and CAD assembly drawing indicating overall dimensions, tolerances, and surface finish. Also prepare bill of materials. Printout of CAD assembly drawing should be attached along with the report. 8 Hrs	06
5.	Assignments on design of Helical Springs, Bolted joints, Welded joints [one each] with free hand sketches. (numerical problems) 6 Hrs	04
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	R.S.Khurmi, J.K.Gupta	A Textbook of Machine Design	S. Chand ,2014
2	V.B.Bhandari	Introduction to Machine Design	Tata Mc. Graw Hill,2002
3	R.K.Jain	Machine Design	Khanna Publications, 1998
4	Pandya & Shah	Machine Design	Dhanpat Rai & Sons, 1992
5	PSG Coimbatore	Design Data Book	PSG Coimbatore ,2000

ELECTIVES II & III (MC614) ADVANCED MANUFACTURING

1. COURSE OBJECTIVES:

This course is designed to acquaint and motivate the student with the nature of manufacturing processes, to know about the advancements in the area of manufacturing and production processes, to get familiarized with working principles and develop a skill to perform operations on nontraditional machines, machining center, SPM, automated machines.

2. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &		riods/	Week	Total	Examination Scheme				
course title	(in	hour	rs)	Hours	rs Theory P Marks M		Practical Marks		Total Marks
MC614 ADVANCED	L	Т	P	Н	TH	TM	TW	PR/OR	
MANUFACTURING	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC614.CO1: Explain the fundamentals of advanced manufacturing processes

MC614.CO2: Develop process plan for machining a complex component.

MC614.CO3: Select the machines and toolings for manufacturing intricate components.

MC614.CO4: Demonstrate the operations on advanced machines.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1	1	2	1	1	1	1	2
CO2	3	3	3	2	2	3	2	2	3
CO3	3	3	2	2	2	2	2	2	3
CO4	2	2	2	2	2	3	2	2	3

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	М	Thr	CO
1 ADVANCED CASTING PROCESSES			
Working principle process description advantages limitations an	1 15	08	CO1
applications of the following		00	CO3
1 1 Investment Casting			005
1.2 Ceramic Mould casting			
1.3 Full Mould casting			
1 4 Continuous Casting			
2 SPECIAL WELDING PROCESSES			
3 Working principle process description advantages limitations and			
applications of the following welding processes	15	10	CO1
3.1.1 Resistance welding	15	10	CO^2
3.1.2 XAW welding			CO3
3.1.25AW welding			CO4
3.1.4TIG welding			004
3.2 Working principle process description advantages limitations and	_		
applications of the following Modern welding processes:			
3.2.1 Electro beam welding			
3.2.7 Electro octani werding			
3 3Underwater welding technique			
3 CNC MACHINES			
2.1 Introduction	15	10	CO2
2.1.1 constructional features of CNC Machine			CO3
2.1.2 Designating Axes of CNC machine			CO4
2.1.3 Automatic tool changer and tool magazine.			
2.2 Introduction to CNC program	_		
2.2.1 manual Part programming including subroutines and canned cycles.			
4 SPECIAL PURPOSE MACHINES & GEAR MANUFACTURING	18	12	CO1
PROCESSES			CO2
4.1 SPM			CO3
4.1.1 Need, principles, advantages, limitations and applications.			
4.2 GEAR MANUFACTURING PROCESSES			
4.2 0LAR MARON ACTORING TROCESSES			
4.2.2 Indexing and Dividing Heads			
4.2.3 Different Methods of indexing			
4.2.4 working principle, advantages, limitations and applications of			
i) Gear Hobbing			
ii) Gear Shaving			
iii) Broaching			
5 NONCONVENTIONAL MACHINING PROCESSES			
5.1 Working principle, advantages, limitations and Applications of following	12	08	CO2
processes			CO3
i) Wire cut EDM,			
ii)Electrochemical Grinding,			
iii) Plasma Arc Cutting,			
iv) Abrasive water jet machining.			
5.2 Introduction to Additive manufacturing (3D Printing)			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Advance casting processes	08	15
2	Special welding processes	10	15
3	CNC machines	10	15
4	SPM & Gear manufacturing processes	12	18
5	Nontraditional machining processes	08	12
		48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (5,6 compulsory. any four from remaining)	Marks				
1	Prepare a job using any one of the casting methods					
2	Job on Resistance welding/TIG/MIG welding					
3	Write a part program on machining center.					
4	Job on CNC machine.					
5	Manufacture a Gear using Milling machine (Group of 5)					
6	Industrial visit to observe at least one Special Purpose Machines (SPM) or					
	special welding process and report on visit					
7	Literature review on wire cut EDM					
8	Literature review on Plasma Arc Cutting					
	Total	25				

09. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	D. K. Singh	Manufacturing Engineering	Ane Book pvt ltd 2011.
2	P. N. Rao	CAD/CAM Principals and Applications	Tata McGrow Hill
3	HMT Bangalore	Production Technology	Tata McGrow Hill
4	Hajra Choudhury	Workshop Technology volume II	MPP pvt ltd
5			New age international
	Pabla B. S.	CNC machines	limited.2011

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	S.S. Agarwal	Advanced Manufacturing Processes	Nirali Prakashan
2	Vaibhav Rangari	Advanced Manufacturing Processes	Tech-Max
3	Divya Zindani,	Advanced Machining and	Springer
		Manufacturing Processes	

1. COURSE OBJECTIVE:

Automobile engineering has vast scope in today's world and has grown tremendously in the last few decades. The technology involved in automobile is changing rapidly with the advent of electronic controls. Global concern for environment has given impetus to the development of hybrid and electric vehicles. This course is aimed at familiarizing the student with the basic concepts of automobile, its working principle and systems.

2. TEACHING AND EXAMINATION SCHEME

Semester									
Course code &	Periods/Week			Total	Examination Scheme				
course title	(in hours)		Hours	Theory		Practical		Total	
				Marks		Marks		Marks	
(MC 622)	L	Т	Р	H	TH	TM	TW	PR/OR	
AUTOMOBILE	3	-	2	5	75	25	25	25	150
ENGINEERING									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC 622.CO1: Describe the various types of automobiles.

MC 622.CO2: Demonstrate the working of different systems in an automobile.

MC 622.CO3: Troubleshoot different faults in an automobile.

MC 622.CO4: Use different tools & equipments in an automobile workshop.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	1	1	2	2	1
CO2	3	2	1	2	2	1	2	2	1
CO3	3	3	3	3	3	3	3	3	3
CO4	3	2	2	3	3	3	2	3	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
1 INTRODUCTION & CHASSIS CONSTRUCTION OF AN	Μ	Thr	СО
AUTOMOBILE			
1.1Classification of automobiles based on use, capacity, body style,			
Engine location.			
1.2 Layout of Automobile: 4-wheel drive Automobile, 2 -wheel drive			
Automobile- front & rear wheel drive.			
1.3 Types of chassis frames Conventional/Framed chassis	8	4	CO1
Functions of chassis frame			
1.4 Various loads on the frame			
1.5Frame construction, Frame sections, Sub-frames			
1.6 Frameless chassis/Monocoque/Unitary design			
2 FUEL SYSTEMS			
2.1 Petrol fuel systems			
1. Carbureted			
2. Electronic fuel injection (EFI),			
3. Throttle Body injection (TBI)			
4. Multi point fuel injection (MPFI)			
5. Gasoline direct injection (GDI)			cor
6. Comparison of MPFI v/s Carbureted fuel system	10	0	02
7. Comparison of Multi point fuel injection (MPFI) v/s	12	ð	CO^{2}
Throttle Body Injection (TBI),			COS
8. Functions of various sensors and actuators,			
9. Engine management system,			
2.2 Diesel fuel systems			
1. Individual pump system			
2. Common Rail Diesel Injection (CRDI)			
3. Fuel injection timing for diesel engines.			
3 POWER TRANSMISSIONS, STEERING & SUSPENSION			
SYSTEM			CO2
3.1 Clutch: Necessity			
Construction and working of different types of clutches,			CO3
a) Single plate clutches-diaphragm & coil spring type.			
b) Multi-plate clutch, Comparison between Dry & wet			CO4
clutch			
3.1 Construction and working of a Fluid Flywheel			
3.2 Gear box: Necessity			
Construction and working of the following			
a. Sliding-mesh, constant mesh, synchromesh &			
Epicyclic gear boxes			
b. Torque convertor			
c. Automatic transmission	20	10	
d. Overdrive.	28	18	
e. Transfer case (4WD)			
3.5 Advances in power transmission			
a. Automated Manual Transmission (AMT)			
D. Continuous variable Transmission (CVT)			
c. Dual clutch Shift Gear (DSG)	1		

3.4 Steering: Necessity				
a. Steering Mechanisms: Ackerman & Davis				
b. Steering linkage for vehicle with rigid axle &			CO2	
independent suspension,				
c. Steering gearbox – Rack & Pinion, recirculating ball,			CO3	
worm & worm wheel				
d. Steering geometry, Wheel alignment and wheel			CO4	
balancing				
e. Power steering:				
i) Hydraulic (Integral type)				
ii) Electrical				
3.5 Suspension system: Necessity				
a. Different type of springs used in suspension:				
i) Leaf spring				
ii) Coil spring				
iii) Torsion bar				
iv) Pneumatic (Air)				
b. Construction and working of a shock absorber				
c. Types of suspension system				
1) Rigid Axle suspension system				
i) Leaf spring suspension				
ii)Coil spring suspension				
2) Independent suspension				
i)McPherson strut type,				
ii)Double Wishbone type,				
3) Pneumatic/air suspension system				
4 ELECTRICAL SYSTEM			CO2	
4.1 Battery – construction, rating, charging and maintenance	12	7	CO3	
4.2 Starting system- Bendix drive, solenoid shift with			CO4	
over-running clutch drive				
4.3 Generating system-DC generator, need for cut-out,				
Alternator, Voltage regulator				
4.4 Lighting system, Sealed beam				
4.5 Air conditioning system: construction and working				
4.6 Circuits for: flashers, horn, and wind screen wiper.				
4.7 Trouble shooting of electrical system.				

5 BRAKE SYSTEM, SAFETY EQUIPMENT & EMISSION CONTROLS			
a. Brake system: Necessity			
1.Construction and working of following			
i) Mechanical Brake – Drum and Disc			
ii) Hydraulic brake system- Drum and Disc			
iii) Pneumatic/Air brake system,			
iv) Air assisted hydraulic brakes,			CO2
v) Vacuum assisted hydraulic brakes.			
2.Working of Anti-lock Braking System (ABS)			CO3
b. Safety Equipment & Emission Controls	15	11	CO4
1. Auto safety devices & Equipments: seat belts, Air bags,			04
collapsible steering			
2. Automobile Emissions:			
a) Effect on environment			
b) Catalytic converter			
c) Pollution control measures: BS VI			
norms for petrol and diesel vehicles			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	INTRODUCTION & CHASSIS CONSTRUCTION OF AN AUTOMOBILE	4	8
2	FUEL SYSTEMS	8	12
3	POWER TRANSMISSIONS, STEERING & SUSPENSION SYSTEM	18	28
4	ELECTRICAL SYSTEM	7	12
5	BRAKE SYSTEM, SAFETY EQUIPMENT & EMISSION CONTROLS	11	15
	Total	48	75

8. SPE	CIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS	
No	Practical (any one from 1 and 4), (any one from 2 and 3), (any one	Marks
	from 5 and 6), and7,8,9 compulsory	
1.	Dismantling and assembly of petrol engine or diesel engine	
2.	Trouble shooting of clutch.	
3.	Trouble shooting of Brakes	
4.	Dismantling and assembly of gear box.	
5.	Trouble shooting of MPFI by creating any two faults.	
6.	Troubleshooting of electrical system	
7.	Tracing of the air conditioning circuits of an automobile and identifying	
	the different components and learning the charging procedure.	
8.	Replacement of tie rods or tie rod end of steering linkage.	
9.	Awareness on Motor Vehicles Act (expert talk / Video presentation)	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Kirpal Singh	Automobile Engineering-volume I& II	Standard Publishers Distributors
2	C.P.Nakra	Basic Automobile Engineering	Dhanpat Rai Publishing Company
3	R. K. Rajput	A textbook of Automobile Engineering	Laxmi Publications Ltd
4	Dr. A.K.Babu Er. Ajitpal Singh	Automobile Engineering	S. Chand Publications
5	Crouse and Anglin	Automotive Mechanics	TATA McGraw-Hill publishing company ltd.
6	Joseph Heitner	Automotive Mechanics	CBs publishers & distributers

9.2 Internet and Web Resources

S. No.	Author Title of Books		Publishers			
1	https://lecturenotes.in/subject/174/automobile-engineering-ae					
2	http://www.vssut.ac.in/lecture-notes.php?url=mechanical-engineering					
3	https://www.svce.ac.in/departments/auto/subjects_auto.php					
4	https://www.youtube.co	<u>om</u>				

1. COURSE OBJECTIVES:

Through this course the students will be able to understand the importance and applications of jigs and fixtures, appreciate the use of various types of locators, clamps and other tools, get knowledge about elementary design aspects and recognize different types of jigs & fixtures as per the need of manufacturing process.

2. TEACHING AND EXAMINATION SCHEME

Semester					Examination Scheme				
Course code & course title	Periods/Week (in hours)		Total Hours	Theory Marks		Practical Marks		Total Marks	
MC629 JIG &	L	Т	P	Н	TH	TM	TW	PR/OR	
FIXTURES DESIGN	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC629.CO1: Explain industrial significance of jigs and fixtures.

MC629.CO2: Select suitable locators, clamps, indexing devices and tool setting elements.

MC629.CO3: Design a jig for a given component.

MC629.CO4: Design a fixture for a given component.

4. Mapping Course Outcomes with Program Outcomes

	, the first second s										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02		
CO1	3	1	1	1	1	1	1	1	1		
CO2	3	3	3	3	1	2	2	2	2		
CO3	3	3	3	3	2	3	2	3	2		
CO4	3	3	3	3	2	3	2	3	2		

 $Relationship : Low - 1 \qquad Medium - 2 \qquad High - 3$

5. DETAILED COURSE CONTENTS/MICRO-LESSON PLAN

M= Marks	Thr = Teaching hours			
Unit		М	Thr	CO
1. INTRODU	JCTION			
1.1 Significance & purpose of jigs & fixtures, Definition, Advantages.				CO1
1.2 Economic	consideration			
1.3 Elements	of jigs fixtures: Locating elements, clamping elements, Tool			
guiding & Se	tting elements.			
1.4 General d	esign principles]		

2. LOCATION & LOCATING DEVICES	11	07	CO1
2.1 Location: Six degrees of freedom, Duty of location system, Choice of			CO2
location system, Redundant location, Six-point location principle.			
2.2 Locating methods: From a plane surface, From a profile, From cylindrical			
surface.			
2.3 Typical locators & their applications: support/rest pads or pins, Fixed and			
Adjustable.			
2.4 Locators from a profile: Pins, location nests.			
2.5 Locators from a cylindrical surface: Location post, Location pot, conical locators, cylindrical locators in combination & use of diamond pin.			
2.6 Vee locators: Fixed and Sliding			
3. CLAMPING			
3.1 Principles of clamping: position, strength, productivity, operator fatigue, and			
work piece variation	15	08	CO1
3.2 Types of clamps: Screw clamps and use of floating pad, Strap or plateclamps,			CO2
Retractable strap clamps, Swinging strap clamps, Edge clamps, Spider clamps,			
Pivoted clamps, pivoted strap clamps, pivoted edge clamps, pivoted two way			
clamps, swinging clamps, Quick action clamps (use of 'C' washer & captive 'C'			
washer), Cam clamps, Eccentric shaft clamp, Toggle clamp and Power			
clamps.			
3.3 Use of quarter turn nut; Multiple clamping; Equaliser; stacking			
4. INDEXING DEVICES AND DRILL JIG BUSHES			
4.1 Linear indexing; Rotary Indexing			
4.2 Indexing plate; Rotary Indexing Tables	18	10	CO1
4.3 Material & heat treatment for drill jig bushes			CO2
4.4 Types of bushes: Press fit bushes and slip bushes; Headed bushes andheadless			
bushes; Renewable bushes; Liner bushes; Threaded bushes; Special			
bushes			
5. DESIGN OF JIGS & FIXTURES			
5.1 Drill jig design – Types of jigs: Plate jigs & channel jigs, Angle plate jigs,	24	18	CO1
Post jig & Pot jig; Turn over jig; Leaf or latch jig; Box jig; Design procedure			CO2
5.2 Provisions for swarf removal			CO3
5.3: Design of Milling fixture			CO4
5.4 Use of tenons; use of cutter setting block			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/MACRO-LESSON PLAN

Unit	Unit	Number of	Marks
No		lectures	
1	Introduction	5	07
2	Location & Locating Device	7	11
3	Clamping	8	15
4	Indexing Devices and Drill Jig Buses	10	18
5	Design of jigs & fixtures	18	24
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS

No.	Practical	Marks
1	Basic Principles	2

2	Illustration of basic elements of Jigs & Fixtures	3	
3	Locating Devices	3	9.
4	Clamps	3	LE
5	Indexing Devices	2	AR
6	Drill Jig bushes	2	NI
7	Design of simple drill- jig, for a given component (Assembly &	5	NG
	Details) (Designed Jig may be redrawn using CAD software.		RE
8	Design of simple milling fixture, for a given component (Assembly	5	SO
	& Details) (Designed fixture may be redrawn using CAD software.		UR
	Total	25	CE

S

9.1 Text Books

Sr. No.	Author	Title of Books	Publishers
1	PH Joshi	Jigs & Fixtures	Tata McGraw Hill
2	M.H.A. Kempster	Introduction to Jig and Tool	The English
		Design	Language Book
			Society, London
3	ASTME	Fundamental of tool design	Prentice Hall
4	Donaldson & Gold	Tool Design	Tata McGraw Hill

9.2. Reference books for further study

Sr. No.	Author	Title of Books	Publishers
1	Central machine Tool Institute,	Machine Tool Design	Tata McGraw Hill
	Bangalore	handbook	
2	Edward G. Hoffman	Jig and Fixture Design	Cengage

(MC631) LEAN MANUFACTURING

1. COURSE OBJECTIVE:

This course will enable the student to understand the basics of Lean Manufacturing and its different tools used in Industries. Its set of principles and processes leads to identifying and eliminating different wastes in the system. Lean Manufacturing helps in streamlining operations or manufacturing with Customer TAKT time, identifying the bottle neck areas and eliminates the same, which in turn will lead to Reduced Cycle Times.

2. TEACHING AND EXAMINATION SCHEME

Course Code &	Perio	ds/We	ek	Total		Exam	ination S	cheme	
Course Title	in Ho	urs		Hours	Theory	Marks	Prac	tical	Total
							Ma	irks	Marks
(MC631) LEAN	L	Т	Р	Н	TH	TM	OR	TW	150
MANUFACTURING	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC631.CO1: Identify value added and non-value-added activities in a workplace

MC631.CO2: Apply 5S concept to maintain a workplace. MC631.CO3:

Use Lean tools to make improvements in the system MC631.CO4: Select

Standard Work/ Best Method.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	2	2	1	2	2	2	1	3
CO2	3	2	2	3	3	2	2	2	2
CO3	3	2	3	3	3	3	2	2	2
CO4	3	3	3	3	3	3	2	2	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course C	outcomes		
Unit			Μ	Thr	СО
1 INTRODU	CTION TO LEAN				
MANUFACI	URING				
1.1 History of	lean manufacturing.		22	13	CO1

1.2 Lean – Meaning & Definition. Objectives of Lean			CO2	
Manufacturing system			CO3	
1.3 Lean Manufacturing V/s Traditional			CO4	
Manufacturing				
1.4 Value added Activity, Non-Value-added activity				
1.5 Internal Customer and External Customer	-			
1.6 Concepts of Waste, Eight Types of Wastes	-			
1.7 Pull System and Push system. Difference between				
Pull and Push system,				
1.8 Introduction to Lean Six sigma, Lean v/s Six	-			
Sigma				
2 5S ORGANIZATION SYSTEM				
2.1 "5S" Terminology	9	5	CO1	
2.2 The Concept of 5-S with Examples			CO2	
2.3 Importance of 5S in Industry / Office,			CO4	
2.4 5S Visuals control.				
2.5 5S Audit				
3 ESSENTIAL LEAN TOOLS				
3.1 Standardized Work				
3.2 KAIZEN	22	15	CO1	
3.3 One-piece Flow or Continuous flow			CO2	
3.4 Pull system and Kanban, Heijunka /Leveling			CO3	
3.5 Visual Control / Management			CO4	
3.6 TAKT Time, Cycle Time, SMED/OTS (Single				
Minute Exchange of Dies/One Touch Setup)				
3.7 Jidoka,/Mistake proofing / Poka Yoke				
3.8 Introduction to Total Productive Maintenance				
4 JUST IN TIME				
4.1 Introduction	12	8	CO1	
4.2 Elements of JIT: Small lot Sizes, set up Time, Pull			CO3	
production system, Cellular layouts, Standardization of			CO4	
components and work methods, Supplier network,				
Flexible Resources, Continuous Improvement				
4.3 Just in Time Manufacturing				
4.4 Benefits of JIT				
5 VALUE STREAM MAPPING				
5.1 Concent of VSM	10	8	CO1	
			CO2	
5.2 VSM Methodology, symbol used	1		CO3	
5.3 Current and Future State Map	1		04	
5.4 Examples of VSM	1			
	1			
Total	75	48	-	1

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	No of	Marks
No		lectures	
1	Introduction to Lean manufacturing	13	22
2	5S Organisation System	05	9
3	Essential Lean Tools	14	22
4	Just in Time	08	12
5	Value Stream Mapping	08	10
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS (ANY FIVE)

No	Practical	Marks
1.	Identifying Wastes in an Industry where you had undergone training and	
	suggest ways to improve.	
2	Set up Institute's Workshop / Office / Lab or any other workplace to 5S	
	Standard & prepare a detailed report	
3	Case study on application of 5S in Industry.	
4	Pull System demonstration	
5	Prepare a report on implementation of Kaizen at workplace.	
6	Industry Visit to check best practices and make a Report.	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Jeffrey K. Liker	The Toyota way	McGraw
			Hill
			Professional
2	James P. Womack, Daniel T.	The Machine That changed the world	Free Press,
	Jones, Daniel Roos		New York
3	Gopalkrishnan N.	Simplified Lean Manufacture:	PHI
		Elements, Rules, Tools and	
		Implementation	
4	Eric Ries	The Lean Startup	Penguin
5	Christopher Jahns, Nicolas	Lean Production	DGM Icfai
	Reinecke, Roger Moser		Books

Directorate of Technical Education, Goa State 9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	James P. Womack and Daniel T. Jones	Lean thinking	Lean enterprise Institute Cambridge
2	Mike Rother & John shook	Learning to See	Lean enterprise Institute Cambridge

Directorate of Technical Education, Goa State (MC 617) COMPUTER NUMERICAL CONTROL MACHINES

1. COURSE OBJECTIVE:

This course comes under core technology category. The intent is to teach students concepts, principle and advances in manufacturing system. The advanced manufacturing use latest technology for machining parts with complex design features for ease and minimal or no human interference. The parts/products manufactured meet quality standards and quick response to the customer demand.

The students will learn modern manufacturing machines, their operations, tooling's, peripheral support systems like AGV, ARS and robots used on the shop floor. Students will acquire knowledge and understand skill of operating advanced machines i.e. CNC machines. The students will be industry ready on completion of this course.

2. TEACHING AND EXAMINATION SCHEME

Semester											
Course code &	Peri	ods/V	Veek	Total	Examination Scheme						
course title	(i	n hou	rs)	Hours	Theory Marks		Hours Theory Marks		Pra N	actical Iarks	Total Marks
(MC 617) CNC	L	Т	Р	Н	TH	тм	TW	PR/OR			
MACHINES	3	-	2	5	75	25	25	25	150		

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC 617. CO1: Describe the Numerical Control Technology in Machine tools.

MC 617. CO2: Write part program for given component.

MC 617.CO3: Select the tooling for CNC machines

MC 617.CO4: Apply manual and computer aided part programs on machines

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	2	1	1	1	1	1
CO2	3	3	3	3	2	2	2	1	3
CO3	3	3	3	3	2	3	2	2	3
CO4	3	3	3	3	3	3	2	2	3

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Unit	Μ	Thr	CO
1 NC TECHNOLOGY			
1.1 Automation in manufacturing industry, Automation in machine			
Tools.	15	08	CO1
1.2 Fundamental of NC Technology, Suitability and limitations of NC			
Technology	_		
1.3 NC manufacturing, NC/CNC machines, DNC Systems.	4		
1.4 Need of CNC software, Advantages and Disadvantages of NC, CNC and DNC systems.			
2 NUMERICAL CONTROL M/C TOOLS			
2.1 Basics of CNC machine construction/hardware. Classification based			
on (i) Feedback control: Open loop and closed loop, (ii) Control system	15	10	CO1
feature: point to point, Straight line and Continuous path.			CO3
2.2 Designating axis and motion in CNC machines, CNC Tooling: need			
and importance; Automatic Tool changer (ATC) & Tool Magazines	_		
2.3 Tooling for Machining Centers; Tooling for Turning centers; Tool			
presetting and equipment, Flexible tooling system.			
3. MANUAL PART PROGRAMMING	4		
3.1 Fundamentals of part programming; Programming Formats; G and	1.5	10	GO2
M Codes, NC words, Interpolation: Linear and Circular	15	10	CO2
3.2 Procedure for developing manual part program; Part program for			CO3
point to point machining; Straight line machining; curved path/surface			C04
2.2 Dert program for Turning conter and Machining conter	-		
A COMPLETER ASSISTED PART PROCRAMMING			
4.1 Introduction Types of programming Languages Basics of ADT	15	10	COL
Program Procedure for developing APT program	15	10	CO2
4.2 APT Language structure APT word definitions APT program			CO3
statements/Commands			CO4
4.3 Compilation control Commands, Part program using APT			
statements/commands.			
5 REPETITIVE PROGRAMMING AND ADVANCED SYSTEMS			
5.1 Introduction/Meaning of repetitive programming, Importance of sub-			
routines, sub program, Do loops & fixed/canned cycles	15	10	CO1
5.2 Write Manual part program and APT program using sub-routines,			CO2
sub program, Do loops Applicability and use of fixed cycle/canned cycle			CO3
in part program	4		CO4
5.3 Fundamentals of FMC / FMS, CIMS, ARS, AGV, CMM and Robot.	L		
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, Videos, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	NC technology	08	15
2	Numerical Control M/C Tools	10	15
3	Manual part programming	10	15
4	Computer aided part programming	10	15
5	Repetitive programming and Advanced Systems	10	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Practical Title	
1	Industry visits for Numerical Control System and configuration of CNC setup on shop floor.	3
2	Exercise on part program- Writing, entering and editing on CNC machines (Lathe/Machining Centre).	5
3	Industry visits for tooling for CNC Machine.	4
4	Develop a part program for lathe operation like plain turning, facing, taper turning operation. Thread cutting operation etc. Make a job on CNC turning center.	5
5	Develop a part program for milling operations like plain milling, slot milling, pocket milling, drilling etc. Make job on CNC machining center.	5
6	Visit to industries to study the application of NC/CNC technology in manufacturing operations.	3
	Total	25

Directorate of Technical Education, Goa State 9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	P N Rao, N K	Computer aided Manufacturing	Tata McGraw Hill
	Tewari, T K Kundra		
2	M. Adithan, M & B.	CNC Machines – Programming &	Wiley Eastern Ltd,
	S. Pabla	Applications	
3	Korem, Y. & J.B.	Numerical Control of	McGraw Hill.
	Uri	Manufacturing System	
4	Mikell P. Groover	Automation, Production systems,	Pearson
		Computer integrated manufacturing	
5	Mikell P. Groover,	CAD/CAM Computer Aided	Prentice Hall of India
	Emory W. Zimmer	Design and Manufacturing	
	JR		

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1	ISO Standard	G and M Codes for Machining center	Manufacture of Machine
2	ISO Standard	G and M Codes for Turning center	Manufacture of Machine

1. COURSE OBJECTIVE:

Power generating capacity and energy consumption are direct measures of development of a nation. Different types of powerplants are set up in our country for generating power. Also, some industries set up their own captive power plants in order to be self-sufficient. Efficient operation of these powerplants with minimum impact on environment is essential for sustainable development. After studying this course students will be able to operate and maintain various types of power plants.

2. TEACHING AND EXAMINATION SCHEME

Semester VI											
Course code &	Periods/Week			Total	Examination Scheme						
course title	(iı	n hou	rs)	Hours	Theory Practical		actical	Total			
					Marks		Marks Marks		Marks		Marks
(MC 623)	L	Т	Р	Н	TH	TM	TW	PR/OR			
POWER PLANT	03	-	02	05	75	25	25	25	150		
ENGINEERING											

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC623.CO1: Describe construction and working of power plants.

MC623.CO2: Evaluate various performance parameters of a power plant and its cycles.

MC623.CO3: Manage fuel handling & waste disposal in power plants.

MC623.CO4: Select the power plant for a given set of conditions.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	1	1	1	1	1
CO2	3	2	2	2	2	3	1	2	2
CO3	3	2	2	2	3	3	2	2	3
CO4	3	3	3	2	3	3	2	3	2

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes]	
Unit	М	Thr	CO
1 HYDROELECTRIC POWER PLANT			
1.1 Introduction	12	07	CO1
1.2 Site selection for hydroelectric power plant			CO4
1.3 Classification of hydroelectric power plant			
1.4 General arrangement of storage type hydroelectric power plant and			
its operation			
1.5 Advantages of hydroelectric power plant.			
1.6 Environmental aspect of hydroelectric power plant			
2 STEAM AND GAS TURBINE POWER PLANT			
2.1 Steam turbine power plant			
2.1.1 Coal based steam turbine power plant	31	20	CO1
Introduction. Steam cycles: Rankine cycle. Modified Rankine cycle.			CO3
reheat cycle, Regenerating cycle, Layout of modern coal-based steam			CO4
power plant, working of steam power plant, site selection for steam			
power plant			
A A			
2.1.2 Coal handling system			
Equipment's used for out plant, storage and in plant handling of coal.			
Pulverized fuel handling system- Bin system, Pulverized fuel burner-			
cyclone burner.			
2.1.3 Ash handling system			
Layout of ash handling plant, mechanical and Pneumatic Ash handling			
system.			
2.1.4 Boiler Feed water treatment			
De concentration or blow down, De aeration, Demineralization, Ion			
exchange process.			
2.1.5 Pollution from thermal power plant : Air pollution and control			
equipment's (cyclone separator, ESP), solid waste and thermal pollution			
and methods to reduce it.			
2.2 Gas turbine power plant			
Introduction, Gas turbine cycle, Classification of gas turbine power			
plant- working of open and close cycle gas turbine power plant,			
Advantages of gas turbine power plant, thermal refinement of gas			
turbine power plant			
Pollution from gas turbine power plant and its control	_		
2.3 combined cycle power plant	_		
Construction and working of combined cycle power plant, advantages			
of using combined cycle.			
3.DIESEL ELECTRIC POWER PLANT	12	8	CO1
3.1 Introduction, layout, construction and working of following			CO3
subsystems: Air intake system, fuel system, exhaust system, cooling	1		CO4
system and lubrication system	_		
3.2 Criteria for selection of diesel electric power plant			
3.3 Synchronizing Diesel generating power with grid supply and	1		
automatic change over.	1		

4.NUCLEAR POWER PLANT			
4.1 Principle of release of energy by nuclear reactor			
4.2 Nuclear fuels used in reactor.			
4.3 General component of nuclear reactor and its function	12	08	CO1
4.4 Classification of nuclear reactor: - PWR, BWR and Breeder reactor			CO3
construction and working.			CO4
4.5 General layout of nuclear power plant			
4.6 Advantages of nuclear power plant			
4.7Pollution from nuclear power plant			
Radioactive pollution, waste from reactor, thermal pollution, Radiation			
Hazards and disposal of nuclear waste			
5. FLUCTUATING LOADS ON POWER PLANT			
5.1Introduction	08	05	CO2
5.2 Define: load curves, terms and factors, connected load, Maximum			CO4
demand, Demand factor, Average load, Peak load, Diversity factor,			
Plant use factor, Plant capacity factor			
5.3 Effect of variable load on power plant design and operation			
5.4 Selection of number and size of units]		
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of	Marks
		lectures	
1	Hydroelectric power plant	07	12
2	Steam and gas turbine power plant	20	31
3	Diesel electric power plant	08	12
4	Nuclear power plant	08	12
5	Fluctuating loads on power plant	05	08
	Tota	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Collecting data regarding different types of power plant in India and their	5
	present power development status.	
2.	Case Study on performance enhancement of any one type of power plant	4
3.	Prepare annual maintenance plan for any power plant.	4
4.	Operation of Coal Handling System (Field Visit/Video Presentation)	2
5.	Operation of Ash Handling System (Video Presentation)	2
6.	Operation and maintenance of a nuclear reactor (Video Presentation)	2
7.	Prepare report on Heat recovery system in a power plant	4
8.	Report on Field visit to power plant/ Video Presentation	2
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Arora and	A course in power plant	DhanpatRai and Co
	Domkundwar	engineering	
2	P. K. Nag	Power plant engineering	Tata McGraw Hill
3	A. Chakrabarti and	A text book of Power	DhanpatRai and Co
	M. L. Soni	System Engineering	_
4	Er. R.K.Rajput	Power Plant Engineering	Laxmi Publication

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Thomas C. Elliott	Standard handbook of	Tata McGraw Hill
		power plant engineering	

1. COURSE OBJECTIVES:

With rapid advances in industrial processes, new types of risks and hazards are being increasingly introduced. Safety of life and assets has always been a top priority in any industry. Keeping this in mind, this course is designed to acquaint the students with safety norms & principles practiced in industries.

2. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Periods/Week			Total		Examination Scheme			
course title	(ii	(in hours)		Hours	The	Theory		Practical	
					Marks		Marks		Marks
(MC626) (SAFETY	L	T	Р	Н	ТН	TM	TW	PR/OR	
ENGINEERING)	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course the students will able to:

MC626.CO1: Implement various safety practices in working environment.

MC626.CO2: Identify the causes of accident in the workplace.

MC626.CO3: Analyze the hazards at work environment

MC626.CO4: Select appropriate personal protective equipment.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	3	3	2	1	2
CO2	3	3	2	2	2	2	2	2	3
CO3	3	3	2	2	2	2	2	2	2
CO4	3	3	3	2	3	2	2	2	3

Relationship : Low-1 Medium-2 High-3

Directorate of Technical Education, Goa State 5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours CO = Course Out	comes		
Unit		Μ	Thr	СО
1 INDUST	FRIAL SAFETY AND FACTORIES ACT			CO1
1.1 Intro	oduction-Safety -Goals of safety engineering.			CO2
1.2 Nee				
1.3 Safe		11 8		
1.4 Role	e of management, supervisors, workmen, union	18,		
gove	ernment and voluntary agencies in safety,			
1.5 Safe	ety policy,			
1.6 Safe	ety Officer-responsibilities& authority.			
1.7 Safe	ety committee-need, types & advantages.			
1.8 Gen mac	eral factories act related to safety of employees chineries	s and		
1.9 Intro	oduction to National Institute for Occupational	Safety and		
Hea	lth (NIOSH), Environmental Protection Agenc	y (EPA) &		
Occ	upational Safety and Health Administration (O	SHA)		
1.10. In	troduction to ISO Standards for Safety & Envir	ronment		
	(ISO 45001,ISO14001)			
2	ACCIDENT AND INSURANCE			
2.1 Def	inition of accidents, Injury,			CO1
2.2 Cau	ses of accidents and factors affecting it, Unsafe	e act, Unsafe		CO2
Con	dition,			CO3
2.3 Clas	ssification of accidents,		20 10	
2.4 Acc	ident prevention method-Engineering, Education	on and		
Enfo	orcement.			
2.5 Acc	ident report form;			
2.6 Ben	efits of Accident report forms;			
2.7 Cos	st of accidents			
2.8 Acc	cident investigation -Why? When? Where? Wh	no? & How?		
2.9 Cas	se study on accidents investigation, Job safety a	nalysis (JSA)		
5 sig	gma			
2.10	Introduction to Insurance, Types and compa	rison.		

3. SAFETY EDUCATION & HOUSEKEEPING	12	8	
3.1 Safety Education & Training -Importance.			CO1
3.2 Various training methods,			CO2
3.3 Communication- purpose, barrier to communication.			CO3
3.4 Role of government agencies and private consulting agencies			
in safety training – creating awareness, awards, celebrations,			
safety posters, safety displays, safety pledge, safety incentive			
scheme, safety campaign			
3.5 Housekeeping: Definition, Responsibility of management and			
employees, Advantages of good housekeeping, 5 s of			
housekeeping.			
3.6 Work permit system- objectives, hot work and cold work			
permits.			
3.7 Entry into confined spaces.			
4 SAFETY IN MATERIAL HANDLING			
4.1 Classification of safety in Material Handling;			C01
4.2 Manual Handling; kinetic method of lifting			CO2
4.3 Fall- Definitions; Causes of common fall			CO3
4.4 Types of falls and safety regarding falls.	12	6	
4.5 Inbuilt safety in cranes, hoist and lift, chain pulley block,	12	0	
Mixers, conveyors			
5 HAZARDS IN INDUSTRY & THEIR PREVENTION			
5.1 Fire hazards and prevention: Types of Fires and relevantExtinguishers,			CO1
Fire detection sensors			CO2
5.1 Machine Hazard: Types of machine hazards Common	20	16	CO3
safeguarding methods and devices;			CO4
5.2 Hazards in chemical industry: classification of hazardous			
chemicals; properties of flammable chemicals;			
5.3 safety in storage and transportation of			
flammable fluids;			
5.4 Types of chemical emergencies and their prevention.			
5.5 Noise: Introduction to noise; Effect of noise; Remedial			
measures to combat noise.			
5.6 Electrical hazards			
5.7 Personal protection in the work environment			
Types of Personal protective equipment-respiratory and non-			
respiratory equipment.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number of	Marks
No		lectures	
1	INDUSTRIAL SAFETY AND FACTORIES ACT	8	11
2	ACCIDENT & INSURANCE COVERAGE	10	20
3	SAFETY EDUCATION & HOUSEKEEPING	8	12
4	SAFETY IN MATERIAL HANDLING	6	12
5	HAZARD IN INDUSTRY & THEIR PREVENTION	16	20
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practicals (At least Six))	Marks
1.	Visit to the Inspectorate of Factories & Boilers /safety agency and Prepare the report on safety measures followed in the industry.	
2.	Conduct a mock drill to handle emergency situation in the Institute.	
3.	Survey a nearby market and prepare a report on safety equipment and their specification available in market.	
4.	Prepare at least one safety poster or safety display that can be used in surrounding area	
5.	Prepare a report on root cause analysis of an industrial accident.	
6.	Identify different types of fires and select appropriate fire extinguisher	
7.	Select appropriate PPE for industrial environment	
8.	Prepare an action plan for disposal of industrial waste for prevention of health hazards.	
	Total	25

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	NaseerElahi	Industrial Safety Management	Kalpaz Publication 2006
2	H.l. kalia	Industrial Safety And Human Behavior	Aitbs Publishers, India
3	A. N. Saxena	Industrial Safety	National Productivity Council 1978

(MC630) MAINTENANCE ENGINEERING

1. COURSE OBJECTIVES:

Maintenance engineering is one of the most common disciplines of an industrial organisation. A diploma holder must have a fair knowledge of the maintenance management principles and maintenance tasks to be performed in the industry. This course is designed to impart necessary knowledge to students in maintenance engineering.

2. TEACHING AND EXAMINATION SCHEME

Semester									
Course code &	Peri	Periods/Week		Total	Examination Scheme				
course title	(ii	(in hours)		Hours	Theory		Practical		Total
					Ma	rks	Marks		Marks
MC630	L	Т	P	Н	TH	TM	TW	PR/OR	
MAINTENANCE	3	-	2	5	75	25	25	25	150
ENGINEERING									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC630.CO1: Identify the various maintenance practices adopted in industries.

MC630.CO2: Prepare an estimate of given maintenance task.

MC630.CO3: Apply suitable techniques and engineering tools for maintenance work

MC630.CO4: Analyse the data acquired in condition monitoring of equipment.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	1	1	2	2	1	1	2
CO2	3	3	2	3	2	2	1	1	3
CO3	3	3	3	3	3	2	2	3	2
CO4	3	3	3	3	3	1	2	2	2

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Outcomes			
Units	Μ	Thr	CO
1 CONCEPT OF MAINTENANCE & ITS PRACTICES			
1.1 Introduction to concept of maintenance: Need for maintenance.			
Types of maintenance practices: Breakdown, preventive, predictive.	15	08	CO1
Their comparison and areas of application.			
r r r r r r r r r r r r r r r r r r r			
1.2 Preventive maintenance: Importance of preventive maintenance,			
Schedules of Preventive maintenance, Preventive maintenance			
programming, Manpower & machine scheduling			
1.3 Shutdown maintenance: Planning for a shutdown by using			
PERT and CPM technique, efficient use of manpower & machinery			
during shut down period.			
1.4 Need for manuals and types of manual			
Contents of maintenance manuals, Manual writing or reporting,			
Maintenance practices. Systematic recording of maintenance viz.			
Maintaining log books and history cards.			
2 ECONOMICS OF MAINTENANCE			
2.1 Maintenance stores control, Maintenance store rooms			
Inventory & classification of inventory related to maintenance	9	7	CO2
Standardisation of maintenance parts.			
2.2 Approach to maintenance estimation.			
Classification of jobs, Preparation of estimates			
Estimating techniques and selection of estimating methods			
3 PREDICTIVE MAINTENANCE & CONDITIONING			
MONITORING	18	12	CO4
3.1 Importance of predictive maintenance			
Introduction to programming of predictive maintenance: Detection,			
analysis and correction			
Vibration as a parameter for condition monitoring:			
3.2Introduction to vibration of simple spring mass system.,			
Terminologies used in vibration monitoring- vibration amplitudes,			
Displacement, Velocity, Acceleration, Use & selection of vibration			
amplitude parameter, Detection of defects in rolling elements bearing			
a gear, establishing levels of violation, baseline, warning a danger			
lavels			
3.3 Instruments used in vibration monitoring: Displacement			
nickuns Velocity nickuns Accelerometers Snike energy meter and			
Strohoscope			
3.4 Vibration analysis Introduction to machine signatures Analysis			
of common defects using vibration monitoring instruments viz			
Unbalance misalignment looseness & Defects in Rolling Contact			
bearings.			
4 LUBRICATION			
4.1 Types of lubricants: Liquid, semi fluid and solid. Requirements of	12	7	CO3
lubricants, Selection of lubricants for various applications using			
some, available commercial grades,			
4.2 Various modes of lubrication	1		
Lubrication methods: Ring type, Cup type, Wick, Circulating			

type, Grease gun, Lubrication schedules;			
5 MAINTENANCE OF MACHINES & RECONDITIONING			
OF COMPONENTS			
5.1 Reconditioning and repair of a. Flat surfaces, b. Shafts and	21	14	CO3
spindles, c. bushes, d. keys and keyway, e. Gears, f. Valves;			
Metal spraying, welding, grinding and re-boring for reconditioning.			
5.2 Bearings: Pulling out and installing RC bearings, maintenanceof			
journal bearings, Bearing lubrication.			
Belts & Seals: Types of oil seals, Failure of oil seals, Belt tension			
adjustment, care and precautions			
Servicing of hydraulic pistons cylinder arrangement, Servicing of			
hydraulic and pneumatic valves.			
5.3 Maintenance of Reciprocating air compressor-Valves, piston			
rings, cylinder and bearings. Trouble shooting.			
Centrifugal pump- Maintenance of wearing ring, stuffing box,			
mechanical seal, Troubleshooting.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No	Unit	Number of lectures	Marks
1	Concept of Maintenance & Practices	10	15
2	Economics of Maintenance	7	9
3	Predictive Maintenance & Conditioning Monitoring	12	18
4	Lubrication	9	15
5	Maintenance of machines & Reconditioning of components	10	18
	Total	48	75

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Minimum 08 Practicals to be conducted)	Marks
1	Demonstrate use of different types of tools in maintenance work.	
2	Demonstrate mounting and dismounting of rolling contact bearing.	
3	Prepare a maintenance schedule using PERT and C.P.M. Technique.	
4	Record and analyse vibration data for condition monitoring.	
5	Prepare a maintenance estimate for a given task.	
6	Use maintenance manual to carry out a maintenance task.	
7	Do alignment of coupled shafts using dial gauges.	
8	Replace gland packaging of a gland and stuffing box provided in a machine such as centrifugal pump.	
9	Dismantle, Inspect and assemble hydraulic/pneumatic valve and cylinder.	
10	Prepare troubleshooting chart for reciprocating compressor.	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	S.N.Bhattacharya	Installation, servicing & maintenance	S.Chand & Co
2	Sushil Kumar Srivastava	Maintenance Engineering and Maintenance	S.Chand & Co
3	Lindley R Higgins	Maintenance Engineering Handbook	Tata Mc Graw Hill publisher

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Carl A. Nelson	Millwright and Mechanics Guide	Theodore Audel & Co.

AUDIT COURSE

(AC102) INDIAN CONSTITUTION

1. COURSE OBJECTIVES:

As a proud citizen of this country every student must be aware about the Indian Constitution to appreciate the provisions available for the people of this biggest democracy in Indian Constitution so that the youth of this country plays active role in development of the country by participating in the formation of sensitive and proactive Government at national and state level. This course intends to make students aware about various constituents of the Indian Constitution.

2. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Course code &	&	Peri	iods/V	Veek	Total		Examination Scheme			
course title		(ii	n hou	rs)	Hours	Th	eory	Practical		Total
						M	arks	ks Marks		Marks
(AC102) INDIA	٩N	L	Т	P	Н	TH	TM	TW	PR/OR	
CONSTITUTIO	DN	2	-	-	2	-	-	-	-	-

3. Course Content

Unit 1 – The Constitution - Introduction
 The History of the Making of the Indian Constitution
 Preamble and the Basic Structure, and its interpretation
 Fundamental Rights and Duties and their interpretation
State Policy Principles
Unit 2 – Union Government
Structure of the Indian Union
 President – Role and Power
 Prime Minister and Council of Ministers
• Lok Sabha and Rajya Sabha
Unit 3 – State Government
• Governor – Role and Power
 Chief Minister and Council of Ministers
• State Secretariat
Unit 4 – Local Administration
District Administration
Municipal Corporation
• Zila Panchayat
Unit 5 – Election Commission
Role and Functioning
Chief Election Commissioner
State Election Commission

4. Suggested Learning Resources:

Title of Book Author Publication

1. Ethics and Politics of the Indian Constitution

Rajeev Bhargava Oxford University Press, New Delhi,2008

2. The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3. Introduction to the Constitution of India

DD Basu Lexis Nexis; Twenty-Third 2018 edition

5. Suggested Software/Learning Websites:

a. https://www.constitution.org/cons/india/const.html

b. http://www.legislative.gov.in/constitution-of-india

c. https://www.sci.gov.in/constitution

d. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-ofindia/