(ME 401) STRENGTH OF MATERIALS

1. COURSE OBJECTIVES:

Through this course the students will able to understand the fundamentals of solid mechanics, acquire the elementary knowledge of stresses, strains and their effects. They will also analyze the behavior of machine parts under various loads. It is important to understand and analyze various types of loads, stresses and strains, which are the main causes of failure of machine parts. The subject also deals with understanding the properties of engineering materials and applying the same in solving engineering problems.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV													
Course code	e &	Periods/Week		Total	Examination Scheme									
course tit	le	(iı	n hour	s)	Hours	Theory Marks Practical Marks		Theory Marks		Theory Marks		s Practical Marks		Total
										Marks				
(ME 401) Stren Materials	igth of	L	т	Р	Н	TH	тм	тw	PR/OR					
	-	3	1	1	5	75	25	25	-	125				

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

ME401CO1: Describe behaviour of engineering materials under the action of external loads.

ME401CO2: Represent simple stress & strain, SF & BM, Moment of inertia, bending stresses & torsion.

ME401CO3: Solve various problems on simple stresses & strains, SF & BM diagrams, bending stresses, moment of inertia & torsion.

ME401CO4: Analyse the behaviour of materials under various loads.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Developmen t of Solutions	Engg. Tools, Experimenti ng& Testing	Engg. Practices for Society, Sustainabilit	Project Managemen t	Life -long Learning		
CO1	3	1	0	0	2	0	2	1	1
CO2	3	3	1	1	0	1	1	2	
CO3	3	2	2	1	0	0	2	3	1
CO4	3	3	2	1	1	1	2	2	1

Relationship	:	Low-1	Medium-2	High-3
renationiomp	•			ingn 2

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M =	Thr = Teaching hours				
Marks					
Units:			м	Thr	со
1. SIMPLE S	STRESS AND STRAIN		15	10	
1.1 Definiti	on of stress and strain (Num	ericals on stress and strain)			
1.2 Stress -	strain Curve for Ductile Mat	terial labeling the significant points on the curve.			
1.3 Concep	t of elastic limit, Hooks law &	&Young's Modulus of Elasticity			
1.4 Deform	ation expression of a body s	ubjected to single force $[\delta I = PL/AE]$			
1.5Numerio	cals based on concept of p	rinciple of Superposition [Bars of uniform cross			CO1
section & B	ars of different cross sectior	ns only]			CO2
1.6Concept	of lateral strain and Poissor	's Ratio.			СОЗ
[Numerical	s on lateral strain & Poisson'	s Ratio to be covered]			CO4
1.7Concept	of shear stress, shear strain	and Modulus of Rigidity.			
1.8Definitio	on of term- volumetric strain	and bulk Modulus [No Numericals]			
Note: - [Nu	mericals on stresses in comp	oosite sections are to be excluded.]			
2.SHEAR FO	DRCE & BENDING MOMENT		15	10	

2.1 Types of beams and Supports.			
2.2 Concepts of shear force & Bending Moment.			CO1
2.3 Sign Conventions for shear force & Bending Moment.			CO2
2.4 Shear force and bending moment diagram for simple cantilever and simply			CO3
supported beams subjected to point and uniformly distributed load only.			CO4
3. MOMENT OF INERTIA	15	10	
3.1 Definition of Moment of Inertia			
3.2 Perpendicular & Parallel Axis Theorem.			CO1
3.3 Expression of M.I of Rectangular, circular, Triangular & hollow Rectangular sections			CO2
(No derivations, simple numericals).			СОЗ
3.5 Numericals on sections like L section, T section and I section			
4. THEORY OF SIMPLE BENDING	15	09	
4.1 Concept of pure Bending.			CO1
4.2 Theory of simple Bending, Neutral Axis and Bending equation.			CO2
4.3 Bending stress distribution diagram			СОЗ
4.4 Application of bending equation for solid rectangular, solid circular section, hollow			CO4
rectangular and hollow circular section. (simple numericals)			
5. TORSION	15	09	
5.1 Concept of pure Torsion			
5.2 Torsion equation assumptions in Theory of pure torsion.			CO1
5.3 Strength of circular solid & hollow shaft in pure torsion.			CO2
5.4 Shear stress distribution diagram.			CO3
5.5 Polar Modulus, power transmitted by shaft.			CO4
Total	75	48	

N.B: - Question paper will not carry questions on derivations

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and tutorials.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	SIMPLE STRESS AND STRAIN	10	18
2	SHEAR FORCE & BENDING MOMENT	10	18
3	MOMENT OF INERTIA	10	15
4	THEORY OF SIMPLE BENDING	09	12
5	TORSION	09	12
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical (no 1 and 2 are compulsory and any 03 from 3 to 8)	Marks
1.	Tensile Test on M.S or Al using UTM	4
2.	Compression Test on wood/Resin sample using UTM	3
3.	Shear Test on M.S using UTM	3
4.	Brinell Hardness Test on Hardness Testing Machine	3
5.	Rockwell Hardness Test on Hardness Testing Machine	3
6.	Izod Impact Test on M.S or Al.	3
7.	Charpy Impact Test on M.S. or Al.	3
8.	Torsion Test on M.S Specimen.	3
	Total	25
Νο	Tutorial Exercise	
1	Solve atleast 5 problems on unit 1	
2	Solve atleast 5 problems on unit 2	
3	Solve atleast 5 problems on unit 3	
4	Solve atleast 5 problems on unit 4	
5.	Solve atleast 5 problems on unit 5	

Curriculum for Automobile Engineering

9. LEARNING RESOURCES

9.1Text Books

S. No.	Author	Title of Books	Publishers
1	R.S Khurmi	Strength of Materials	S.Chand Publisher
2	S.S. Bhavikatti	Strength of Materials	Vikas Publishing
3	S. Ramamurtham	Strength of Materials	DhanpatRai&Sons
4	R. K. Rajput	Strength of Materials	S.Chand Publisher

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	F.L. Singer	Strength of Materials	London Harper & row
2	Timoshenko & Gere	Mechanics of Materials	CBS Publisher &Distributors, New Delhi

(MC402) MECHANICAL WORKSHOP PRACTICE

1.COURSE OBJECTIVES:

The students will be able to acquire knowledgetoPlan methodology and prepare the job as per given specification by selecting and applying appropriate manufacturing process and Understand the concepts, procedures, types of cutting tools, work holding devices, various operations performed on these machines, their working principles and practices related to various manufacturing processes.

2. TEACHING AND EXAMINATION SCHEME

Semester IV										
Course code &	Periods/Week Tota		Total	Examination Scheme		Scheme				
course title	(in hours)		Hours	Theory Marks		TheoryPracticalMarksMarks		Practical Marks		Total
									Marks	
(MC402) MECHANICAL	L	Т	Р	Н	ТН	TM	TW	PR/OR		
WORKSHOP PRACTICE	-	-	04	-	-	-	50	50	100	

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC402CO1: Identify different types of machine tools and machining processes to produce a component.

MC402CO2: Outline a manufacturing sequence to produce a given part.

MC402CO3: Apply basic skills in the use of various machine tools (milling m/c, grinding machine, shaper and lathe) to perform job following safety guidelines.

MC402CO4: Plan a maintenance schedule for effective functioning of machine tools.

4. Mapping Course Outcomes with Program Outcomes

Relationship:1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO 1	3	1	1	2	2	1	1	1	1
CO 2	3	2	2	1				1	1
CO 3	3	2	2	3	1	1	1	2	2
CO 4	2	1	2	3	1	1	1	1	2

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Phr = Practical hours				
Unit		I	Μ	Phr	СО
1. LATHE.					
1.1 Introduction to types of Lathe.			1		
1.2 Centre Lathe: Tool nomenclatu maintenance schedule and lubricati	re, thread cutting operation. Preven on chart. Types of Coolants.	tive maintenance,			
1.3Introduction to Capstan and turr	et lathe, Principal parts of capstan ar	nd turret lathe.			
1.4 Introduction to CNC lathe, mai element. CNC operation- operating	n elements of CNC lathe, Hand op and control elements, co-ordinate sy	eration, operating ystem.			CO1
CNC programming- methods of pr	ogramming-absolute system and Ind	cremental system,			CO2
Treparatory functions (O-functions)	, ence program input format.				CO3
2. Milling machine					
2.1Introduction, column and knee t	ype milling machine (horizontal and	l vertical), milling	+		CO1
cutters, milling operations.					CO2
2.2 Universal dividing head-const indexing only.	ruction and working, Indexing-di	rect and simple			CO3
2.3 Preventive maintenance, mainte	nance schedule and lubrication chart	s. Coolants.	+		CO4
3 Grinding.					
3.1Introduction, grinding machine	types. Work holding devices.				CO1
3.2 Types of abrasive and bond. Grit	te, Grade and structure of wheel, dres	ssing and truing of			CO2
3 2 Use of Coolent	of wheel, balancing of wheel.				CO3
5.20se of Coolant					
4 Shaper.					
4.1 Introduction to Shaper.					CO1
4.2 Main parts of standard shaper,	work holding devices shaper operation	ons.	1		CO2
4.3 Preventive maintenance schedul	e and lubrication chart.		1		CO3
					CO4
		Total		64	

6. COURSE DELIVERY:

The Course will be delivered through shop talk, shop floor interactions, demonstrations, assignments, video clips and Practicals.

Sr.	Unit No	Practicals/Assignment	Phrs
110	140		
1	1	Job on external threading	04
2	1	Prepare simple job on CNC machine	04
3	2	Produce a hexagonal head/spur gear by indexing device	08
4	2	Machine sides of a rectangular block (centre lathe/milling machine) and mill two slot or opposite sides and a V-groove on one side (V-block)	08
5	3	Prepare job on the following grinding machine 1) Surface grinder-flat surface-01 2) Cylindrical grinder-cylindrical surface-01	04
6	3	Grind lathe tool	04
7	4	Machine two flat horizontal opposite sides of the rectangular block on a shaper (to complete V-block. at Sr. No 4)	08
8	1,2,4	Prepare a preventive maintenance schedule(daily/monthly) and a lubrication chart for any one of the following machine tools (1) Centre lathe (2) Milling machine (3) Shaper	06
09	1,2,4	Identify different types of machine tools in your workshop and write down its specifications and uses	04

7. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

Note: A field visit to modern workshop to be arranged during the semester

8. LEARNING RESOURCES

8.1 Text Books

S. No.	Author	Title of Books	Publishers
1	S.K Hajara Chaudhary	Elements of W/s Technology Vol I &	Media Promoter &
		П	Publisher Pvt. Ltd
2	Raghuwanshi	Workshop Technology Vol II	DhanpatRai& Co
3	P.C Sharma	Production Technology	S. Chand & Co
4	Kaushik and Gupta	Workshop Technology	

S. No.	Author	Title of Books	Publishers
1	R.K Jain	Production Technology	Khanna Publishers
2	W.A.J Chapman	Workshop Technology Vol I& II	CBS

Curriculum for Automobile Engineering

(AU401) AUTOMOBILE ENGINES

1. COURSE OBJECTIVES :

The students will able to understand fundamentals of IC engines and associated systems. They will know the construction, working and function of engine components, engine cooling, lubrication and fuel feed systems. They will be able to dismantle and assemble engines using appropriate tools and following safety procedures. They will also learn to trouble shoot faults and suggest remedies to problems with engine and associated systems.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course code &		Periods/Week		Total	Examination Scheme					
course title		(in hours)		Hours	Theory Marks		Practical Marks		Total	
										Marks
AU401		L	т	Р	Н	тн	тм	тw	PR/OR	
	SILE S	3	-	2	5	75	25	25	25	150

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- AU401CO1. List the components of automobile, IC engine and associated systems and state the functions of each.
- AU401CO2. Describe terminology and fundamentals of automobile engines and associated systems.

AU401CO3. Explain constructionand working of engine components and associated systems.

AU401CO4. Apply the knowledge of automobile engines and associated systems for trouble shooting of faults.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	1			1	1	2	1	1
CO2	2	1	1	1	1	1	2	1	1
CO3	2	2	2	2	2	1	2	2	2
CO4	3	3	2	2	2	1	2	2	2

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives					
Unit	L		м	Thr	со		
1. ENGIN	E PRINCIPLES AND FUNDAM	ENTALS	9	6			
1.1 Introduction	on- Components of an autom	nobile			CO1		
1.2 Basic engi	ne terminology, Engine cycle	s, Classification of automobile engines.			CO2		
1.3 Working o	f 2-stroke and 4 stroke cycle	petrol and diesel engines, Comparison					
of2 - stroke &	4- stroke engines, Compariso	on of C.I. & S.I. engines, Firing order,					
Comparison of	f single and Multi cylinder en	gines, Number and arrangement of					
engine cylinde	rs, Numbering of Engine cyli	nders.					
2. CONSTR	UCTIONAL DETAILS OF BASI	C ENGINE COMPONENTS	18	12			
2.1 Introductio	on-Parts of engine				CO1		
2.2 Construction	onal details-I				CO2		
Cylinder block	, Cylinder head, Crank case, (Dil pan, Manifolds,Gaskets, Cylinder			CO3		
liners, Piston,	Piston rings, Connecting rod	and Piston pin.					
2.3 Construction				CO4			
Crankshaft, En	gine bearings, Valve timing,	Poppet valves, Valve cooling, Valve					
seats, valve ac	ctuating mechanisms, Camsh	afts, Camshaft arrangements, Flywheel,					
VIDIATION GAIN	per and Muthers.						
2.4 Engine Ser	vice						
3.ENGINE COC	DLING SYSTEM		15	10			
3.1 Introductio	on- Heat developed in an eng	ine, Purpose of cooling system			CO1		
3.2 Methods o	of cooling- Air cooling system	, Water cooling system (pump circulation			CO2		
system), Comp	parison of air and water cooli	ng system.			CO3		
3.3 Main com	conents of water cooling syst	tem - Water jackets, Radiator, Expansion					
tank, Radiator	pressure cap, Thermostat, V	Vater pump, Radiator fan, Drive belt,			04		
Coolant tempe	Coolant temperature indicator and gauges, Coolant level indicator.						
3.4 Coolants a	3.4 Coolants and anti-freeze solutions.						
3.5 Cooling sys	stem trouble shooting.				1		
4. LUBRICAT	TION SYSTEM		15	10			

4.1 Introduction- Purpose of lubrication, Parts to be lubricated.			CO1
4.2 Requirements of lubricants, Types of lubricants, Viscosity rating, Service			CO2
rating, Additives for lubricants, Effects of engine conditions on lubricating oil,			602
Critical lubrication conditions for engines, Consumption of lubricating oil.			cos
4.3 Engine Lubrication systems – Petroil lubrication system, Wet sump lubrication			C04
system. Splash lubrication system. Pressure lubrication system. Dry sump			
lubrication system Pre-lubrication system			
4.4 Main components of Pressure lubrication system – Oil strainers, Oil pumps,			
Pressure relief valve, Oil filters, Oil coolers, Oil level indicators, Oil pressure gauges,			
Oil pressure warning light.			
4.5 Lubrication system trouble shooting.			
5. FUELS AND FUEL SYSTEMS	18	10	
5.1 Introduction- Petroleum, Hydrocarbons, Refining of crude oil, Desirable			CO1
properties of engine fuels.			
			CO2
5.2 Types of auto engine fuels- Petrol (Gasoline) as fuel, Characteristics of gasoline,			
Octane rating, Diesel as fuel, Characteristics of diesel, Cetane rating.			CO3
			604
Alternative fuels – Alcohols, CNG, LNG, LPG, Bio-diesel.			04
5.3 Auto fuel safety considerations.			_
5.4 Fuel supply systems- Components of fuel feed system in petrol engine,			
Functions of a carburetor. Construction and working of a simple carburetor. Basic			
working principle of Petrol injection system. Comparison of petrol injection system			
working principle of Petron injection system, comparison of petron injection system			
with carburetor method.			
5.5 Components and basic working principle of fuel feed system in Diesel engine, Air			1
fuel mixture ratio in petrol and diesel engines.			
5.6 Fuel supply system trouble shooting.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Engine principles and fundamentals	6	9
2	Constructional details of basic Engine components	12	18
3	Engine cooling system	10	15
4	Lubrication system	10	15
5	Fuel and fuel systems	10	18
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Operate a cut section model to explain 2-stroke engine.	
2.	Operate a cut section model to explain 4-stroke engine.	
3.	Dismantling, examination and re-assembling of different engine parts of Petrol Engine.	
4.	Dismantling, examination and re-assembling of different engine parts of Diesel Engine.	
5.	Dismantling, checking, cleaning and refitting of various parts of water cooling system in automobiles.	
6.	Maintenance of Lubrication system in automobiles.	
7.	Carburettor overhauling, float adjustment and tuning.	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Dr. Kirpal Singh	Automobile Engineering Vol. 2	Standard Publisher Distributors
2	Crouse/Anglin	Automotive Mechanics	McGraw Hill Education
3	Anil Chhikara	Automobile Engineering Vol. 1 - Engine System	SatyaPrakashan, New Delhi
4	G.B.S. Narang	Automobile Engineering	Khanna Publishers

9.2Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	M.L Mathur, R.P Sharma	Internal Combustion Engines	DhanpatRai Publications
2	K. Newton, W. Steeds, T. K. Garrett	The Motor Vehicle	Butterworth-Heinemann

(AU402) AUTOMOBILE TRANSMISSION SYSTEMS

1. COURSE OBJECTIVES:

The students will able to illustrate the vehicle layouts, chassis frame & location of various systems. They will know the principle, construction and working of clutch, gearboxes, propeller shafts, universal joints, slip joints & final drive in the transmission system. They will understand the terminology of wheels & tyres. They will be able to dismantle and assemble different transmission systems using appropriate tools and following safety procedures.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course cod	Periods/Week		Total	Examination Scheme						
course title		(in hours)		Hours	Theory		Practical		Total	
					Hours	14141	I KS	141	ai KS	Marks
A 11/02		т	Т	D	н	ти	тм	тW		
A0402		L	1	1	11	111	1 1 1	1 **	INOK	
Automob Transmiss Systems	ile Sion S	3	-	2	5	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- AU402CO1. List the different types of units and components which comprise the chassis and drive systems of an automobile and state the functions of each.
- AU402CO2.Explain the construction and working of the different components of the chassis and drive systems of an automobile.
- AU402CO3. Illustrate the construction of the various components of the chassis and the drive systems of an automobile.
- AU402CO4. Apply the knowledge of the various components of the chassis and drive systems of an automobile for trouble shooting of faults.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	3	1	0	0	1	1	2	1	1
CO2	3	2	2	2	2	2	2	2	2
CO3	3	1	1	2	0	1	3	2	1
CO4	1	2	2	3	2	2	2	3	2

Relationship :Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives			
Unit			Μ	Thr	СО
1 Vehicle layout and Chassis frame:					
1.1 Classification and specifications of Chassis- 2-Wheeler, Passenger car, Commercial Vehicle.					CO1 CO2
1.2 Vehicle layout & its types—2 Wheel Drive- Front Engine Front Wheel Drive, Rear Engine Rear Wheel Drive, Front Engine Rear Wheel Drive & 4 Wheel Drive.					CO3 CO4
1.3 Major a	ssemblies – their locations	and functions.			
1.4 Various	loads acting on chassis fra	ame.			
1.5 Functio construction, frame chassis					
1.6 Trouble	shooting				
2 Clutch			15	10	
2.1 Functio	ns of Clutch.				CO1
2.2 Princip	2 Principles of operation of clutch.				
2.3 Various clutch, multip	s types of clutches used in a blate clutch - dry & wet clu	Automobiles – single plate diaphragm atches			CO3 CO4
2.4 Materia	ls used for clutch lining.				

Curriculum for Automobile Engineering

2.5 Hydraulic& mechanical clutch linkage, Cable operated clutch linkage.			
2.6 Trouble shooting			_
3 Gear Box	15	10	
3.1 Function and necessity of Gear Box.			CO1
3.2 Types, construction and working of gear boxes & their layouts such as sliding mesh, constant mesh, synchromesh type, vario - drive, transfer case.			CO2 CO3
3.3 Gear shift mechanism.			CO4
3.4 Concepts of automatic gear box.			-
3.5 Torque Converter- principle, construction and working			_
3.6 Trouble shooting			_
4 Propeller shafts, universal joints, slip joints, Wheels and Tyres	15	10	
4.1 Necessity and function of Propeller Shaft.			CO1
4.2 Drive line for front wheel drive-Constant velocity joint.			CO2
4.3 Drive line for rear wheel drive-Universal joint and slip joint.			CO3
4.4 Types of wheels, rims and tyres.			CO4
4.5 Tyre materials, construction.			-
4.6 Necessity and types of treads.			-
4.7 Tyre inflation and its effect.			-
4.8 Tyre rotation and nomenclature.			-
4.9 Trouble shooting			-
5 Final drive	15	08	
5.1 Principle, Necessity and function of final drive and differential.			CO1
5.2 Construction & Working of differential			CO2
5.3 Limited slip differential.	+		CO3
5.4 Types of rear axles such as full floating type, semi – floating and three quarter floating.			CO4
5.5 Transmission in two wheeler- chain drive and belt drive.			-

5.6 Trouble shooting			
Tota	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures and class room interactions.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Vehicle layout and Chassis frame	10	15
2	Clutch	10	15
3	Gear Box	10	15
4	Propeller shafts, universal joints, slip joints, Wheels and Tyres	10	15
5	Final drive	08	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Identify different parts of the chassis.	
2.	Dismantling and Assembling of a single plate clutch.	
3.	Dismantling and Assembling of a multi plate clutch used in two wheelers.	
4.	Dismantling and assembling of a Synchromesh gear box.	
5.	Dismantling and assembling of automatic transmission devices such as torque converter, vario drives.	
6.	Dismantling and assembling of propeller shaft, universal joint and slip joint.	
7.	Dismantling and assembling of a differential.	1

8.	Dismantling and assembling of tyres, wheels and rims.	
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers		
1	Anthony Schwaller	Motor automotive	Delmar Publisher Inc.		
		technology			
2	Tim Gills	Automotive service	Delmar Publisher Inc.		
3	Anil Chikkara	Automobile Engineering	SatyaPrakashan New Delhi		
		Vol. II			
4	Crouse / Anglin.	Automobile Mechanics	TATA McGraw – HILL		
5	Kirpal Singh	Automobile Engineering	Standard Publication		
		Vol.I			
6	HarbansSingth	The Automobile	S. Chand Publication		
	Royat				
7	R.B. Gupta	Automobile Engineering	SatyaPrakashan New Delhi		
8	S. Srinivisan	Automotive Mechanics	TATA McGraw – HILL		
9	H M Sethi	Automotive Technology	TATA McGraw – HILL		

9.2 Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	R.K Rajput	A text book of Automobile Engineering	Firewall Media
2	John Whipp	Transmission Chassis & related systems	Cengage Learning EMEA

MC 404) Fluid Machinery

1. COURSE OBJECTIVES:

The students will be able to acquire knowledgeto apply the concept introduced in Fluid Machinery to engineering applications such as turbo machinery and flow measurement. Fluid machinery plays an important role in the conversion of hydraulic energy tomechanical energy and vice-versa. Hydraulic turbines are used for meeting our day-to-daypower demands. Also, different types of pumps are essential equipment in all the industries. Hydraulic systems have a wide range of applications in machine tools, material handling, marine, mining, metal processing, equipment and other fields.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course code &		Periods/Week		Total	Examination Scheme					
course title		(in hours)		Hours	Theory Marks		Practical Marks		Total	
(MC 404) F Machine	luid rv	L	Т	Р	Н	тн	ТМ	TW	PR/OR	Marks
		03	-	02	05	75	25	25	-	125

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

MC404CO1: Define various terms related to fluid mechanics & fluid machineries.

MC404CO2: Explain fluid properties, fluid pressure, fluid flow, water turbine, pumps, accumulator & intensifier.

MC404CO3: Apply laws and theorems on statics and dynamics to calculate various parameters of fluids,

flowing through pipes and various devices.

MC404CO4: Classify fluids, fluid flow, water turbines & pumps.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	2	1		1			1	1	1
CO2	2	1	1	1	1	1	2	2	1
CO3	3	3	3	2	1	1	2	2	1
CO4	3	2	1	1	2	1	3	1	1
Relationsh	ip : L	ow-1 M	ledium-2	High-3					

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours]
Unit		I	м	Thr	со
1 Introduction	12	10			
1.1 Definition	and classification of fluids, B	ranches of hydraulic -Hydrostatics &			_
Hydrodynamio	CS				
1.2 Fluid prop	erties				
Density, Speci	fic gravity, specific weight - (Simple Numerical)			
Viscosity, surf	ace tension, capillarity, comp	pressibility (No Numerical)			
1.3 SI Units of	Pressure, Pressure head, Atr	nospheric pressure, Positive and Negative			
Gauge pressu	e, Absolute pressure (Simple	Numerical on pressure, pressure head and			
conversion to	equivalent heads of other lic	luids)			
1.4 Pascal's La	w and its applications.				
1.5 Pressure n	neasuring devices				
Manometers-	principle & working of piezor	neter tube, simple 'U' tube, differential 'U'			
tube and inve	rted 'U' tube manometers (Si	imple Numerical)			
1.6 Bourdon p					
gauges					CO1
					CO2
					CO3
					CO4
					04
2 Hydrostatics	;		12	06	
2.1 Total press	sure, Centre of Pressure				
2.2 Pressure o	n plane surfaces immersed i	n liquid – horizontally, vertically & inclined to			
free surface, c	alculation of total pressure a	and determination of position of centre of			
pressure for c	rcular, triangular & rectangu	lar surfaces immersed vertically and inclined in			CO1
one type liqui	d. (Simple Numerical)				CO2
					CO3
					005
3 Hydrodynar	nics		21	14	
3.1 Types of fl	ow - steady; unsteady, - unif	orm, non-uniform, laminar and turbulent flow,			
compressible,	incompressible flow.				

Curriculum for Automobile Engineering

3.2 Continuity equation, Energies of liquid - pressure head, Datum head, velocity head,			
Total energy of liquid, Bernoulli's theorem (Simple Numerical)			
3.3 Application of Bernoulli's theorem: Pitot tube, Venturi-meter (Simple Numerical on			CO1
Discharge through Horizontal Venturi-meter)			
3.4 Definition of orifice, types, Vena contracta, Hydraulic coefficients Cc, Cv and Cd,			CO2
Discharge through a circular orifice. (Simple Numerical)			
3.5 Laws of fluid friction, Reynold's number and it significance, Various losses in pipe			CO3
flow- major and minor losses- loss of head due to entrance, sudden enlargement, sudden			CO 4
contraction. (Simple numerical on loss of head due to friction, sudden expansion and			04
contraction)			
3.6 Hydraulic gradient line, Total energy line (No numerical)			
2.7 Materials and a strategy offerst and as readily a second			
3.7 Water hammer in pipes - causes, effect and remedial measures			
4 Water Turbines (No numerical in this unit)	12	08	
4.4 Water Turbines: Classification of water-turbines			
			_
4.5 Impulse turbines: Pelton Turbine-Construction and working			
4.6 Reaction Turbines: Francis Turbine- construction and working, Kaplan turbine –			_
Construction and working			
5			CO1
4.7 Difference between Impulse turbine and Reaction Turbine			602
4.8 Advantages and Disadvantages of Francis Turbine over a Pelton wheel			CO4
5 Pumps, Accumulator and Intensifier (No numerical in this Unit)	18	10	
5.1 Centrifugal Pumps: Classification, construction & working, Types of casings, Types of			
impellers, Multistage centrifugal pumps, pumps in series, pumps in parallel, Priming,			
Cavitation, faults & remedies of centrifugal pumps. Definition of Static head, delivery			
head, manometric head, NPSH			
5.2 Reciprocating pumps: Classification of reciprocating pumps, Construction and			
working of single acting reciprocating pump, Slip and negative slip, Air vessels, functions			
of air vessels.			
5.3 Difference between centrifugal pump and reciprocating pump.			CO1
5.4 Construction, working and application of rotary vane nump. External Gear numps			-
ser sense sector, working and approactor of rotary valie parties External Sear parties			CO2
5.5 Construction, working and application of Accumulator and Intensifier			CO4
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to fluid mechanics and Pressure Measurement	10	12
2	Hydrostatics	06	12
3	Hydrodynamics	14	21
4	Water Turbines	08	12
5	Pumps, Accumulator and Intensifier	10	18
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS.

No	Practical	Marks
1.	Measurement of pressure of water in a pipe by manometer	03
2.	Verification of Bernoulli's theorem	03
3.	Determination of coefficient of Discharge of Venturi meter	03
4.	To determine the relationship between loss of head and velocity for pipe flow	03
5.	Demonstrate the construction and operation of a Pelton Turbine	04
6.	Demonstrate the construction and operation of a Francis Turbine	03
7.	Demonstrate the construction and operation of a Centrifugal Pump	03
8.	Demonstrate the construction and operation of a Reciprocating Pump	03
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R.K. Rajput	Fluid Mechanics and Hydraulic Machines	S. Chand Ltd
2	R.K. Bansal	Fluid Mechanics and Hydraulic Machines	LaximiPvt. Ltd
3	R.S. Khurmi	A Text book of Hydraulics, Fluid Mechanics and Hydraulic Machines	S. Chand Ltd
4	P.N. Modi/S.M. Seth	Hydraulics and Fluid Mechanics including Hydraulic Machines	RajsonsPvt. Ltd

(AU403) ORGANISATIONAL BEHAVIOUR

1. COURSE OBJECTIVES:

The students will be able to link the theories of Organisational Behaviour with all the managerial actions undertaken during the course of their careers as Engineers, while also exhibiting the appropriate etiquette in both social as well as professional environments.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV												
Course code &		Periods/Week			Total	Examination Scheme				Exan		Scheme	
course tit	le	(i	n hour	·s)	Hours	Theory Marks		Pra M	Total				
										Marks			
AU403		L	Т	Р	Н	ТН	TM	TW	PR/OR				
Organisational iour	lBehav	4	0	0	4	75	25	-	-	100			

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

AU403CO1: Understand the scope and implications of various life skills & concepts of Organisational Behaviour in any Industrial setup.

AU403CO2: Explain the relationships between various life skills and Organisational Structures and cultures in any industrial setup.

AU403CO3: Identify appropriate behavioural pattern and etiquettes while operating in both a social and professional environment.

AU403CO4: Propose various measures, using the appropriate life skills to manage real life management situations occurring in a variety of Organisational settings.

4. Mapping Course Outcomes with Program Outcomes

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO1	PSO2
CO1	1	0	0	0	2	3	3	0	2
CO2	1	0	1	0	2	3	3	0	3
CO3	1	0	1	0	2	3	3	0	2
CO4	1	0	2	0	2	3	3	0	3

Relationship : Low-1 Medium-2 High-3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives]
Unit			Μ	Thr	СО
1. Fundamen	tals of Organisational Beha	viour	9	5	
1.1 Definitio	n of OB				CO1
1.2 Scope & Ii	mplications of OB				
1.3 Relationsh	ip between OB & Industry				-
1.4 Evolution	n of OB				-
1.5Limitations	s of OB				
2. Individual	Behaviour		27	18	
2.1 Attitudes	at the workplace – Definitio	n of Attitudes, Components of Attitude,			CO1
Types of j	ob-related Attitude				CO2
2.2 Job Satisfa	ction – Factors conducive to vee Performance. Importance	job satisfaction, Effect of Job Satisfaction of high job satisfaction.			CO3
2 2 Values - F	Definition of Values Value S	S Junior of Values Sources for			CO4
2.5 Values – L our value	systems, Types of Values.	ystem, importance of values, sources for			
2.4 Assertive Aggressiv	eness – Necessity for As e Behaviour, Tips or Techniq	ssertiveness, Non-assertive Behaviour, ues to develop assertive Behaviour.			
2.5 Emotional	I Intelligence – Gender diffe	erences in Emotions, Skills involved in			

Emotional Intelligence.			
2.6 Time Management – Benefits of Time Management, Obstacles to Effective Time Management.			
2.7 Motivation – Types of Motivation, Locus of Control, Creators & Victims, Theories of Motivation – Theory of Wage Incentive, Maslow's theory of Motivation.			-
2.8Stress Management-Work Stress, Sources of work Stress, Consequences of Work Stress, Managing Stress			
3. Group Behaviour	24	15	
3.1 Work Teams – Definitions of Work Groups & Work Teams, Types of Teams – Problem Solving Self Managed Work Teams & Cross functional Teams			CO1
Lessons for effective Team building.			CO2
			CO3
3.2 Leadership – Styles of Leadership, Leadership Qualities, Significance of Leadership			- CO4
3.3 Conflict Resolution Skills – definition of Conflict, Views on Conflict, Levels of Conflict, Causes of Conflict, Methods of avoiding conflicts, Constructive and Destructive Conflict, Advantages & disadvantages of Conflict, Conflict Management Styles, Conflict Resolution Process.			-
3.4Negotiation Skills – Need for Negotiation, Features of Negotiation, Negotiation process, Negotiation Types, Negotiation Concepts (BATNA and ZOPA)			
4. Organization Systems	9	6	
4.1 Organization structure, Key Elements in design of Organization Structure – work			CO1
Centralization, Departmentalization, Chain of Command, Span of Control, Centralization and decentralization, Formalization.			CO2
4.2 Virtual Organization, Boundary-less Organization			CO3
4.3 Organization Culture, Characteristics of Organization Culture.			CO4
5.Corporate Ethics & Etiquette	6	4	

5.1 Basic courtesy & Good mannerism		CO1
5.1 General Rules of Behaviour		CO2
5.2 Body Language		CO3
5.3 Personal Dressing & Grooming		CO4
5.4 Telephone Etiquette		
5.5 Dining Etiquette		

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies.

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Fundamentals of OrganisationalBehaviour	5	9
2	Individual Behaviour	18	27
3	Group Behaviour	15	24
4	Organization Systems	6	9
5	Corporate Ethics & Etiquette	4	6
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Exercise on Attitude Survey	3
2	Exercise on Values	3
3	Exercise on Motivation	3
4	Exercise on Group Behaviour	5

5	Exercise on Conflict Handling	3
6	Exercise on Bureaucratic Orientation Test	3
7	Exercise on Stress Analysis	5
	Total	25

9. LEARNING RESOURCES

9.1 Text Books

S. No.	Author	Title of Books	Publishers
1	Stephen Robins	OrganisationalBehaviour	
	Timothy Judge		
	Neharika Vohra		
2	M. N. Mishra	OrganisationalBehaviour	
3	K. Ashwathappa	OrganisationalBehaviour	
4	Fred Luthans	OrganisationalBehaviour	

9.2Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	UdayPareek	Understanding OrganisationalBehaviour.	
2	Niraj Kumar	OrganisationalBehaviour	