(EL405) ELECTRICAL & ELECTRONICS WORKSHOP

1. COURSE OBJECTIVES

The course content will enable the students to learn symbols used for various electrical appliances, making wire joints, crimping of lugs, coil winding and to develop hand on skill for domestic wiring works, estimation of bill of materials and repairs & maintenance of various domestic appliances

2. TEACHING AND EXAMINATION SCHEME

SemesterIIICourse code &	Peri	ods/W	eek	Total	Exami	nation	Scheme	<u>,</u>	
course title	(in h	ours)		Hours			Practical Marks		Total Marks
(EL405) Electrica	al L	Т	P	Η	TH	TM	TW	PR/OR	
& Electronic Workshop	-	-	4	4	-	-	50	25(O)	75

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL405.CO1: Demonstrate the use of series test lamp, multimeter, MCB, MCCB, ELCB and crimping tool.

EL405.CO2: Choose appropriate tools and equipments and apply the skills for carrying out repair and maintenance works of domestic appliances.

EL405.CO3: Prepare plan for domestic wiring works and estimate the material required for the same.

EL405.CO4: Design and develop a mini project and fabricate the PCB required for the same

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

4. MALLING (JOURSE OU		WIIIIK	JORANI OU I	COMES		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
EL405.CO1	3	2	1	3	1	3	2
EL405.CO2	3	2	1	3	1	3	3
EL405.CO3	3	3	3	3	2	3	3
EL405.CO4	3	3	3	3	2	3	3
Deletionship .	Low 1 M	Indium 2	Uigh 2				

Ĩ	PSO1	PSO2
EL405.CO1	3	3
EL405.CO2	3	3
EL405.CO3	3	3
EL405.CO4	3	3

5. SPECIFICATION TABLE FOR TERM WORK (Any 3 from first 5 experiments, experiments 6 to 10 are compulsory)

No	Practical	Marks
1.	Check fault in the electrical components/circuits using series test lamp,	
1.		
	multimeter and meggar.	
2.	Practice of coil winding	
3.	Practicing of crimping different types of lugs	
4.	Study of MCB, MCCB, ELCB	
5.	Electrical maintenance of Air conditioner and Refrigerator	
6.	Connection of fluorescent tube light circuit, identifying its components and	
	measuring of operating and conducting voltage	
7.	Planning, estimating material and connecting given circuit for small room	
	wiring	
8.	Repair and maintenance of domestic appliances (Electrical) such as iron, ceiling	
	fan, table fan, mixer, hot plate, oven, electric kettle, etc. (Minimum 4)	
9.	Repair and maintenance of domestic appliances (Electronics) such as stabiliser,	
	washing machine, television, music stereo, CPU, power supply unit, etc.	
	(Minimum 3)	
10.	Mini project on PCB making.	
	Total	50

6. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	K. B. Bhatia	Electrical appliances & devices	Khanna publishers

(EL408) POWER GENERATION TRANSMISSION & DISTRIBUTION

1. COURSE OBJECTIVES

The course content will enable the students to learn different energy sources & electrical power generation, transmission & distribution process and to be conversant with different domestic wiring system and earthing

2. TEACHING AND EXAMINATION SCHEME

Semester IV	/									
Course code &		Perio	ds/We	eek	Total	Examination Scheme				
course title		(in ho	ours)		Hours	Theory Marks	7			Total Marks
Power Generat	ion	L	Т	Р	Н	TH	TM	TW	PR/OR	
Transmission Distribution (EL408)	&	3	-	-	3	75	25	-	-	100

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL408.CO1: Explain different aspects related to generation, transmission and distribution systems and list components with their functions.

EL408.CO2: Illustrate with sketch the layouts and line diagram of generation processes, types of transmission and distribution lines, domestic wiring and earthing systems.

EL408.CO3: Compare different types of power generation, transmission and distribution systems.

EL408.CO4: Compute parameters related to generation and transmission and prepare estimate for domestic wiring works.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
EL408.CO1	3	1	1	1	1	2	2
EL408.CO2	3	1	1	1	2	2	2
EL408.CO3	3	3	3	2	2	3	2
EL408.CO4	3	3	3	3	3	3	3
Deletienshin .	T 1 N		Iliah 2	•		•	

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PSO1	PSO2
EL408.CO1	2	2
EL408.CO2	3	2
EL408.CO3	2	3
EL408.CO4	2	3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN		7	
M = Marks Thr = Teaching hours CO = Course Objectives			1
Unit	Μ	Thr	СО
1. GENERATION	15	10	CO1, CO2 CO3, CO4
1.1 Terms related to generation: Load curve, demand factor, diversity			
factor load factor, utilization factor (Simple numerical).			
Concept of Base load & peak load power plant			
Grid System, its merits & demerits			
1.2 Main sources of energy for bulk power generation (Thermal, Hydro &			
nuclear), principle of generation using these sources, plant layout & its			
components.			
Non conventional energy sources:			
Concept of solar photovoltaic power generation with Schematic diagram.			
Basic Block diagram and working of wind power generation			
1.3 Diesel generator sets; its main components & their functions.			
Advantages & disadvantages of diesel power plant			
2. TRANSMISSION	24	18	CO1, CO2 CO3, CO4
2.1 Components of Transmission lines,			
Types of supports (poles: MS rail & RCC, towers)			
Types of conductors: AAC, ACSR, All aluminium alloy conductor,			
bundled conductor, ABC & their general electrical & mechanical			
properties.			
Insulators: Pin type, Disc type, post type, stay insulator			
Comparison between pin type & suspension insulators.			
Causes of failure of insulators.			
Concept & calculation of Voltage distribution & string efficiency,			
methods of improving string efficiency, General specifications of			
insulators.			
2.2 Resistance, inductance & capacitance of transmission lines (No			
derivation, No numerical).			
Classification of transmission lines as short, medium & long lines.			
Concept of transposition of conductors			
Concept of Skin effect.			
Corona: Its formation, advantages & disadvantages. Method of its			
reduction.			
Sag & its importance (No numerical)			
2.3 HV, EHV & HVDC transmission system, their main components.			
Advantages & disadvantages of each system.			
3. DISTRIBUTION SYSTEMS	15	9	CO1, CO2, CO3
3.1 Classification of distribution system w. r. t. Voltage & number of wires			
as DC 2 wire, AC 2 wire (single phase), AC 3 wire & AC 4 wire system.			
Their comparison with respect to Volume of conductor material for each			
type and other factors,			

DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

Directorate of Technical Education, Goa State

		1	
Comparison between overhead system and underground system.			
Comparison between single phase & three phase, Three phase three wire &			
three phase four wire			
3.2 Concept of feeder, distributor & service mains			
Types of distributor: Radial, ring & interconnected System			
4. DOMESTIC WIRING	12	7	CO1, CO2 CO3, CO4
4.1 Standard practices relevant to light & fan, power wiring			
Types of wiring:- Casing & capping, conduit (PVC, metallic & concealed),			
their advantages & disadvantages			
Important materials used for house wiring & their functions (main switch,			
distribution board, switch, ceiling rose, lamp holder & socket)			
Schematic & wiring diagram for simple circuits including staircase &			
godown wiring			
4.2 Planning & layout of a domestic installation			
Estimation of quantity/bill of material required for a given domestic			
installation			
5. EARTHING	9	4	CO1, CO2,
			CO3
5.1 Purpose/significance of earthing, Standard earthing practices.			
5.2 Methods & procedure of earthing: Pipe & plate			
Factors affecting earth resistance, methods of reducing earth resistance			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	GENERATION	10	15
2	TRANSMISSION	18	24
3	DISTRIBUTION SYSTEMS	9	15
4	DOMESTIC WIRING	7	12
5	EARTHING	4	9
	Total	48	75

8. LEARNING RESOURCES Text Books

S. No.	Author	Title of Books	Publishers						
1	V.K. Mehta	Principle of Power System	S. Chand						
2	J. B. Gupta	A course in Electric Power	S.K. Kataria & Sons						
3	Dr. S. L. Uppal	Electrical Power	Khanna Publishers						
4	J. B. Gupta	Electrical Installation Estimation &	S.K. Kataria & Sons						
		Costing							

Reference Books for further study

S. No.	Author	Title of Books	Publishers	
1	Raina, Anand &	Transmission & Distribution of		
	Singhal	Electrical Energy		
2	Arora B D	Electric Wiring Estimation &	R. B. Publications	
		Costing		
3	Raina &	Electrical Design Estimation &	New Age	
	Bhattacharya	Costing	International	
			Publishers	

Indian and International codes needed

S. No.	Author	Title of Books	Publishers
1	Government of India	THE INDIAN ELECTRICITY	
	Ministry of power central electricity board	RULES, 1956	

(EL305) ELECTRICAL DRAWING USING CAD

1. COURSE OBJECTIVES

This course will enable the students to use key features of CAD for professional electrical design and drafting.

2. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course code &		Periods/Week		Total	Examination Scheme					
course title		(in hours)		Hours	Theory Marks		Practical Marks		Total Marks	
(EL	305)	L	Т	Р	Н	TH	TM	TW	PR/OR	
Electrical Dr using CAD	awing	-	-	4	4	-	-	50	50(P)	100

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL305.CO1: Choose appropriate commands to develop various electrical drawings using CAD.

EL305.CO2: Demonstrate use of CAD for electrical and electronics circuit drawing.

EL305.CO3: Make use of CAD and drawing skills to prepare wiring layouts and wiring diagram. EL305.CO4: Develop drawing for electrical equipment.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
EL305.CO1	1	1	-	3	-	1	3
EL305.CO2	2	1	-	3	-	2	3
EL305.CO3	2	2	2	3	2	2	3
EL305.CO4	2	2	2	3	1	2	3

	PSO1	PSO2
EL305.CO1	2	2
EL305.CO2	2	2
EL305.CO3	2	2
EL305.CO4	2	2

M = Marks Thr = Teaching hours CO = Course Objectives			00
Unit	Μ	Thr	CO
1. INTRODUCTION TO CAD PRELIMINARIES AND		14	CO1
HANDS ON PRACTICE OF COMMANDS.			
1.1. Setting up new drawing: Units, Limits, Grid, Snap			
1.2. Drawing basic objects: Point, Line, Circle, Arc, Ellipse,			
Parabolas, polygon, Rectangle, Multiline, drawing with precision,			
drawing construction lines and rays, calculating distance and angle,			
use of measure, divide, inquiry commands, redraws and			
regenerating screen display.			
Using Object snap: Endpoint, midpoint, Intersection, Centre Point,			
Quadrant point, Nearest Perpendicular, Apparent Intersection, etc.			
1.3. Edit/modify features and viewing drawings: Object selection:			
selection set with its options like pick box, window, crossing,			
previous, last drawing etc.			
Editing commands – zoom all, zoom previous, zoom extents, zoom			
window, zoom real time, zoom dynamic, zoom pan			
Modify commands: erase, copy, mirror, offset, array, move, scale,			
stretch, lengthen, trim, extend, rotate, break, join, chamfer, fillet,			
1.4. Organising Drawing: concept of layers: creating layers, naming			
layers, making layers ON/OFF, freeze thaw layers, lock/unlock			
layers, setting the properties of layers like colour, line type, line			
weight.			
Concept of blocks: creating, inserting, redefining, and exploding			
blocks.			
Concept of hatch: selecting hatch pattern, hatch styles, hatch			
orientation, associative hatch, boundary hatch, hatching object.			
1.5 Dimensioning and Tolerance: Dimensioning and editing			
dimensions. Single line text, multiline text.			
1.6 Printing/ Plotting drawing: Standard sizes of sheet. Selecting			
various plotting parameters such as paper size, paper units, drawing			
orientation, plot scale, plot offset, plot area, print preview.			
2. DRAWING OF SYMBOLS FOR BASIC ELECTRICAL,		08	CO1
ELECTRONICS AND SUBSTATION EQUIPMENT.			CO2
			CO3
		16	<u>CO4</u>
3. i) DRAWING OF COMPONENTS OF ELECTRICAL MACHINES AND DIFFERENT TYPES OF STARTERS.		16	CO1 CO2
Different parts of transformers, AC and DC motors and their			CO2 CO4
starting methods			CO4
ii) DRAWING OF SIMPLE BASIC ELECTRONIC			
CIRCUITS.			
Basic rectifier circuit, transistor biasing circuit.			
4 i) DRAWING OF ELECTRICAL POWER SYSTEM COMPONENTS		14	CO1 CO2
Transmission and distribution line components, pole mounted			CO2 CO3

substation and single line diagrams ii) DRAWING OF ELECTRIC CIRCUIT DIAGRAM FOR REFRIGERATOR, WINDOW AC, SPLIT AC, OVEN, HPMV LAMP, HPSV LAMP. 5. DOMESTIC AND INDUSTRIAL INSTALLATION WIRING	12	CO4 CO1 CO2 CO3
5.1 Wiring diagrams for domestic installation.		
5.2 Wiring diagram for installation of 3 phase induction motor		
Total	64	

6. COURSE DELIVERY:

The Course will be delivered through practicals, laboratory interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	of
No		hours	
1	INTRODUCTION TO CAD PRELIMINARIES AND HANDS ON	14	
	PRACTICE OF COMMANDS		
2	DRAWING OF SYMBOLS FOR BASIC ELECTRICAL,	08	
	ELECTRONICS AND SUBSTATION EQUIPMENT		
3	DRAWING OF COMPONENTS OF ELECTRICAL MACHINES	16	
	AND DIFFERENT TYPES OF STARTERS .		
	AND		
	DRAWING OF SIMPLE BASIC ELECTRONIC CIRCUIT		
4	DRAWING OF ELECTRICAL POWER SYSTEM COMPONENTS	14	
	AND		
	DRAWING OF ELECTRIC CIRCUIT DIAGRAM FOR		
	REFRIGERATOR, WINDOW AC, SPLIT AC, OVEN, HPMV LAMP,		
	HPSV LAMP.		
5	DOMESTIC AND INDUSTRIAL INSTALLATION WIRING	12	
	Total	64	

8. SPECIFICATION TABLE FOR TERM WORK

Term Work shall consists of minimum 6 No's of Electrical Drawing Sheets using CAD and minimum two on full imperial drawing sheets (or 4 half imperial)

Sr	Drawing sheet details	Marks
No		
1	Basic electrical, electronics and substation equipment symbols.	
2	Transformer Details : core, winding , tank & other accessories	
3	Components of DC motor	
4	Three phase squirrel cage and slip ring induction motor and their parts.	
5	Dc and AC Motor Starters (4-point starter, DOL starter, Star Delta Starter { Manual & Automatic},Autotransformer starter, rotor resistance starter)	
6	Transmission and distribution line components	
7	Layout of 11 KV/0.4 KV H pole mounted substation.	
8	Single line diagram of Extra High Voltage (220KV or 110 KV) substation	
9	Drawing of wiring diagram for domestic installation	

Directorate of Technical Education, Goa State

10	Drawing of wiring diagram for 3 phase induction motor	
11	Drawing basic rectifier circuits	
12	Drawing transistor biasing circuits	
13	Drawing electrical wiring diagram for refrigerator, window AC, split AC, Oven, HPMV lamp, HPSV lamp.	
	Total	50

9. LEARNING RESOURCES Text Books

I EXI D	1 ext books								
S. No.	Author	Title of Books	Publishers						
1	P. Nageshwar Rao	AutoCAD for Engineering	Tata						
		drawing made easy	McGraw Hill.						
2	George Omura	Mastering AutoCAD	BPB Publication						
4	Raina ,Bhattacharya	Electrical design ,Estimating and	New Age						
		costing	International						
5.	P. S. Bhimbra	Power Electronics	Khanna Publisher						
6.	V. K. Mehta, Rohit	Principles of Electronics	S. Chand						
	Mehta								

(EL401) ELECTRICAL MACHINES II

1. COURSE OBJECTIVES:

This subject enables the student to understand the working principle, construction, performance & characteristics, control and applications of various AC electrical machines such as Induction motor (single phase & three phase), alternator, synchronous motor and other AC motors. The students would get acquainted with the knowledge regarding analyzing the various parameters of these machines and also get familiarized with the various starting methods & starters used for starting of these machines along with their control circuits

2. TEACHING AND EXAMINATION SCHEME

SemesterIVCourse code &	Per	Periods/Week		Total	Examination Scheme				
course title	(in)	hours)		Hours	Iours Theory Marks		•		Total Marks
(EL401) Electric	al L	Т	Р	Н	TH	TM	TW	PR/OR	
Machines II	4	_	2	6	75	25	25	25(P)	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL401.CO1: Explain principle of operation and construction of A.C. Machines

EL401.CO2: Demonstrate parallel operation of Alternators and various methods of starting, speed control of A.C. Motors.

EL401.CO3: Compare different types of A.C. machines and their starters

EL401.CO4: Evaluate voltage regulation and efficiency of A.C. machines

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

4. MAITING COURSE OUTCOMES WITH TROGRAM OUTCOMES								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning	
EL401.CO1	2	-	-	-	-	3	2	
EL401.CO2	3	3	2	3	2	3	3	
EL401.CO3	2	2	-	-	-	3	3	
EL401.CO4	3	3	2	3	3	3	2	
D 1 1.	T 1 1	F 1 ¹ O	TT: 1 0					

	PSO1	PSO2
EL401.CO1	2	3
EL401.CO2	3	3
EL401.CO3	2	3
EL401.CO4	3	3

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN	1	-	
M = Marks Thr = Teaching hours CO = Course Objectives			T
Unit	Μ	Thr	CO
1 CONSTRUCTION AND PERFORMANCE OF INDUCTION MOTOR	21	18	CO1, CO3, CO4
1.1 Fundamental principles of rotating machines: Production of rotating			
magnetic flux in a 3 phase winding using vector method,			
working principle of 3 phase Induction motor			
Constructional details and its types: List and functions of parts (stator			
core, stator winding, rotor for slip ring and squirrel cage)			
Terminal marking for three phase induction motor.			
Concept of slip, rotor frequency, rotor emf, rotor current under standstill			
and running condition. 1.2 Phasor diagram at full load condition.			
Development of Equivalent circuit diagram.(no numerical)			
Power flow diagram and calculation of efficiency in induction motor			
Torque-slip characteristics of induction motor and effect of change in rotor			
resistance on characteristics. Definitions of pull up & pull out torque.			
Relationship between starting torque and full load torque, starting torque			
and maximum torque.(no derivation)			
2 INDUCTION MOTOR STARTERS	09	06	CO 2, CO3
2.1 Necessity of starters			
Concept and operation of:			
Direct on line starter (Power & control circuit)			
Manual star/delta starter, Manual auto transformer starter, Rotor resistance			
starters for slip ring induction motor (Power circuit only).			
Concept of soft starter and its advantages.	24	22	<u> </u>
3 ALTERNATORS	24	23	CO1, CO2, CO3, CO4
3.1 Construction and working of alternator			03,004
Comparison of salient and cylindrical pole type			
Advantages of stationary armature & rotating magnetic field.			
3.2 concept of full pitched coil, fractional pitched coil, emf equation (no			
derivation).			
Coil span factor and coil distribution factor (no derivation), effects of these			
factors on generated emf			
Frequency of induced emf and factors on which it depends.			
Operation of alternator under no load & on load (with phasor diagram)			
Armature reaction in a three phase alternator (with vector diagram only)			
and effects of load power factor on it.			
3.3 Operating parameters –armature resistance, leakage reactance,			
synchronous reactance and synchronous impedance.			
calculation of synchronous impedance by O.C. and S.C. test			
Definition, importance and calculation of Voltage regulation(no derivation) Operating characteristics of alternator			
Specifications for procurement.			
3.4 Necessity & desirable conditions for parallel operation of alternators,			
brief explanation of synchronizing alternators by (2 bright-1 dark lamp			
method and Synchroscope method)			
4 SYNCHRONOUS MOTOR	09	05	CO1, CO2
4.1 Principle of operation, methods of starting and Applications.			
ELECTRICAL & ELECTRONICS ENGINEERING CURRICULUM			Page 8

ELECTRICAL & ELECTRONICS ENGINEERING CURRICULUM

Definition of load angle. Final Torque and power equations of a synchronous motor, Variation of currents and power factor under variable excitation & constant load (V-curve). Concept of synchronous condenser.			
Hunting and use of Damper windings			
5 SINGLE PHASE MOTORS	12	12	CO 1, CO2, CO3
5.1 Single Phase Induction Motors:			
Construction and classification, torque-speed characteristics (Double revolving field theory)			
Connection Diagram, working, application of:			
Capacitor start, capacitor start and run, permanent capacitor and shaded			
pole			
5.2 Universal motor, repulsion motor, stepper motor, servo motor			
Total	75	64	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

Unit No	Unit	Number of lectures	Marks
1	CONSTRUCTION AND PERFORMANCE OF INDUCTION MOTOR	18	21
2	INDUCTION MOTOR STARTERS	06	09
3	ALTERNATORS	23	24
4	SYNCHRONOUS MOTOR	05	09
5	SINGLE PHASE MOTORS	12	12
	Total	64	75

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

8. SPECIFICATION TABLE FOR TERM WORK

No	Practical (Minimum 8)	Marks
1	To perform no load & blocked roter test on a 2 phase induction motor and	
1.	To perform no load & blocked rotor test on a 3 phase induction motor and:	
	a) Determine its equivalent circuit parameters, total losses & efficiency,	
	b) Plot the circle diagram to determine the total losses & efficiency.	
2.	To perform load test on a 3 phase induction motor and determine efficiency	
	and variation of speed, power factor with the load.	
3.	Identification of parts and their functions in the following starters and their	
	specifications:- DOL, autotransformer, star delta, rotor rheostat starters	
4.	Starting & reversal of direction of rotation of a 3 phase &1 phase induction	
	motor.	
5.	To perform no load & blocked rotor test on a 1 phase induction motor and	
	determine its efficiency.	
6.	To perform O.C & S.C test on an alternator and determine its synchronous	
	impedance and voltage regulation.	
7.	To determine the excitation required to maintain constant voltage in an	
	alternator under varying voltages	
8.	To plot "V curves" for a synchronous motor.	

9.	To perform the parallel operation of alternators.	
10.	To study the performance of special motors w. r. t current drawn, power consumed, sparking at the brushes and noise level.	
11.	Field visit.	
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	S.K. Bhattacharya	Electrical machinery	Tata Mcgraw
2	J. B. Gupta.	Theory & performance of Electrical Machines	S. K. Kataria & sons
3	B. L. Theraja.	Electrical Technology (Vol II)	S Chand
4	P.S. Bhimbra.	Elementary theory of electrical machines	Khanna Publishers

(EL402) APPLIED AND INTEGRATED ELECTRONICS

1. COURSE OBJECTIVES

This course includes study of electronic devices and circuits like rectifiers, regulators, amplifiers, oscillators and basics of integrated electronics. An understanding of these will provide a good platform to the students to enter into more complex and specialized fields of Electrical and Electronics Engineering.

2. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code &	Perie	Periods/Week		Total	Exami	nation	Scheme	•	
course title	(in h	(in hours)		Hours	Theory Marks		Practical Marks		Total Marks
(EL402) Applie	1 L	Т	Р	Н	TH	TM	TW	PR/OR	
And Integrated Electronics	1 3	-	2	5	75	25	25	25(O)	150

3.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL402.CO1: Illustrate the operation and characteristics of semiconductor devices.

EL402.CO2: Explain applications of integrated circuits.

EL402.CO3: Demonstrate the working of various Electronic circuits.

EL402.CO4: Discuss the applications of semiconductor devices.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
EL402.CO1	3	2	-	3	-	3	1
EL402.CO2	3	3	2	3	3	3	3
EL402.CO3	3	3	2	3	3	3	3
EL402.CO4	3	3	_	3	_	3	3

	PSO1	PSO2
EL402.CO1	2	1
EL402.CO2	2	2
EL402.CO3	3	3
EL402.CO4	2	2

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives		-	1	
Unit	Μ	Thr	CO	
1. DIODES	12	7	CO1, CO4	CO3,
1.1 PN Junction diode				
Construction, Symbol, PN junction with Forward and Reverse bias and				
V-I characteristics.				
PN junction diode as a Rectifier-Half wave Rectifier, Full Wave				
Rectifier, Bridge Type Rectifier. (Circuit diagram, operation and				
relevant waveforms)				
1.2 Zener Diode				
Concept of Zener breakdown, Construction of Zener diode, Symbol, VI				
Characteristics, List its various Applications.				
Zener Diode as a voltage Regulator (Circuit				
Diagram and Operation)				
Photodiode -Principle of Operation, symbol, characteristics ad				
Applications.				
Light Emitting Diode-Principle of Operation, symbol, characteristics				
and Applications				
2. TRANSISTORS	15	11	CO1,	<u>CO3</u>
	10		CO1, CO4	
2.1 BJT				
Basic Construction, Terminals, BJT types -NPN and PNP,				
Transistor action and working of NPN and PNP. Transistor				
current components, Current amplification Factors, Relation				
between α and β. Basic Configurations- CB,CE,CC-Input and Output				
characteristics of each, concept of Active region, Saturation				
region and cut off region in each case, comparison between CB,				
CE, CC.				
2.2 Transiston Dissing and Applications				
2.2 Transistor Biasing and Applications Need for biasing, Transistor Load lines- DC and AC Load Line,				
Q-point and its selection Criterion, Fixed Bias, Emitter				
Stabilized Bias and Voltage Divider Bias (Circuit Diagram,				
output Characteristics with load line points, Expression for input				
current, output current and output voltage in each case), Merits,				
Demerits of each Biasing network.				
Applications of Transistor: Operation of Transistor as a switch and Operation of Transistor				
Amplifier.				
3. AMPLIFIERS AND OSCILLATORS	18	13	CO3, C	04
3.1 Small Signal Amplifier	-		-,-	
Concept of Zi, Zo, Av and Ai, Single Stage CE Amplifier				
(circuit, working, Frequency response)				

		1	
Concept of Multistage Amplifiers-Methods of Coupling-RC,			
Direct, Transformer Coupling (difference between them.)			
Two Stage RC coupled amplifier and Two stage Direct Coupled			
Amplifier (circuit diagram and Frequency response)			
3.2 Power Amplifier			
Concept of Power amplifiers & Classification (Class A,B,C)			
Transformer Coupled Class A Power Amplifier, Class B Push			
Pull Power Amplifier and Class C Power Amplifier.(No			
Derivation).			
3.3 Oscillators			
Concept of Positive feedback, Barkhausen's Criterion.			
RC Oscillator-Circuit and Operation of RC Phase Shift oscillator,			
Expression for Frequency.			
LC Oscillator- Concept of tank circuit- Circuit and Operation of			
Tuned Collector Oscillator			
Limitations of LC and RC Oscillators			
Crystal Oscillator- Circuit and Operation, Expression for			
Frequency.			
4. OPERATIONAL AMPLIFIER	15	9	CO2
4.1 Introduction-			
Concept of Differential Amplifier, Different modes of Operation-			
DIBO, DIUO. Block Diagram and working of Op Amp,			
Schematic diagram, Equivalent Circuit, Symbol and Pin			
Configuration of IC741.			
Opamp parameters			
Input Offset Voltage, Output Offset Voltage, Input Offset Current,			
Input Bias Current, CMRR, Slew Rate (Only definitions and typical			
values), Characteristics of Ideal and Practical Opamp, Concept of virtual			
ground.			
4.2 Modes of Operation of Opamp			
Inverting and Non inverting mode (circuit diagram, analysis and			
Operation), Voltage follower circuit and its applications.			
operation), voltage rons ver encent and its appreations.			
UNIT 5- APPLICATIONS OF OPAMP	15	8	CO2, CO3
5.1 Op-amp as a adder, subtractor (Circuit diagram, analysis,			
output expression) Op-amp as Zero Crossing Detector and			
Schmitt Trigger			
(No derivation, Only circuit diagram, operation and relevant			
Waveforms.)			
Op-amp as an Integrator and Differentiator. (Circuit diagram,			
analysis, output expression.)			
5.2 Introduction to IC 555-Block Diagram-construction and			
operation, Pin Configuration			
Applications- Astable, monostable multivibrator.			
TOTAL	75	48	
IUIAL	13	40	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	DIODES	7	12
2	TRANSISTORS	11	15
3	AMPLIFIERS AND OSCILLATORS	13	18
4	OPERATIONAL AMPLIFIER	9	15
5	APPLICATIONS OF OP-AMPS	8	15
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK

No	Practical (Minimum 8)	Marks
1.	To verify the working of a PN junction diode as a Half wave Rectifier.	
2.	To verify the working of a PN junction diode as a Full Wave Rectifier.	
3.	To verify the working of a Zener Diode as a voltage regulator for change in	
	supply voltage and load.	
4	To plot Input and Output Characteristic of CE amplifier	
5	To verify Q point parameters for a Fixed Bias circuit	
6.	To verify Q point parameters for a Voltage divider Bias circuit.	
7.	To plot frequency Response curve for a single stage RC coupled amplifier.	
8.	To study the operation of RC Phase shift Oscillator and to verify the	
	frequency of oscillation.	
9.	To verify the working of Opamp in Inverting and Non inverting Mode	
10.	To verify the working of Opamp as an Adder and Subtractor	
11.	To verify the working of Opamp as Integrator and Differentiator	
12.	To verify the working of Opamp as Zero crossing detector.	

9. LEARNING RESOURCES

Text Books

S. No.	Author		Title of Books	Publishers
1	Dr. S.	K.	Principles Of Electronics	S.K Kataria & Sons
	Bhattacharya,	Dr.	_	
	Reu Vig			
2	J. B. Gupta		Basic Electronics	S.K Kataria & Sons
3	V.K Mehta		Principles Of Electronics	S. Chand &
			-	Company

Reference Books For Further Study

S. No.	Author	Title Of Books	Publishers
1	J. B. Gupta	Electronic Devices & Circuits	Katsons
2	Ramakant Gayakwad	Linear Integrated Circuits	Prentice Hall Of India

Indian And International Codes Needed

S. No.	Author	Title Of Books	Publishers
1	Robert Boylestead	Electronic Devices & Circuits	Prentice Hall Of
			India
2	B.P. Singh	Electronic Devices & Integrated	Pearson Education
	Rekha Singh	Circuits	

(EL404) ELECTRONIC INSTRUMENTATION SYSTEMS

1. COURSE OBJECTIVES

This course enables students to understand the facts, concepts, principles and applications of instrumentation system. The student will be able to conduct installation, testing and commissioning especially related with transducers and control system, in the field of electrical and electronics.

2. TEACHING AND EXAMINATION SCHEME

Semester IV Course code &	Perio	ds/We	ek	Total	Examir	nation S	ation Scheme			
course title	(in ho	ours)		Hours	Theory Marks	,	Practical Marks		Total Marks	
(EL404)	L	Т	Р	Н	TH	TM	TW	PR/OR		
Electronic Instrumentation Systems	3	-	2	5	75	25	25	-	125	

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL404.CO1: Explain functions of components of instrumentation system.

EL404.CO2: Illustrate use of transducer for measurement of given quantities.

EL404.CO3: Discuss the working and applications of various components of instrumentation system.

EL404.CO4: Select suitable instrumentation system for a given measurement application

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
EL404.CO1	2	-	-	-	-	3	3
EL404.CO2	3	3	2	3	3	3	3
EL404.CO3	2	1	2	3	3	3	3
EL404.CO4	2	3	3	3	3	3	3

Ē	PSO1	PSO2
EL404.CO1	3	2
EL404.CO2	3	2
EL404.CO3	2	3
EL404.CO4	2	2

M = Marks Thr = Teaching hours CO = Course Objectives Unit M Thr CO 1. INTRODUCTION TO INSTRUMENTATION 9 6 CO1, CO2, CO3 Objective of instrumentation system. Block diagram of a general instrumentation system. 8 6 CO1, CO2, CO3 Characteristics of ideal transducer, Classification of transducers: Active and passive transducers, Analog and digital transducers. 18 14 CO1, CO2 2. TRANSDUCERS 18 14 CO1, CO2 2.1 Construction, operation and characteristics of passive transducers: Resistive transducers: Potentiometer, strain guage, (bondcd and semiconductor) RTD, Thermistor 18 14 CO1, CO2 2.1 Construction, operation and characteristics of passive transducers: Capacitive transducers: varying of distance, area, permittivity 2.2 Active transducers: varying of distance, area, permittivity 2.2 Active transducers (principle, working and material used) Piezoelectric transducer 14 CO1,CO2, CO4 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. 21 14 CO1,CO2, CO4 3.1 Displacement measurement: biotoelectric pickup, magnetic pickup 14 CO1,CO2, CO4 CO4 3.1 Displacement measurement: diaphragm with strain gauge Level measurement: photople	5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN		_	
1. INTRODUCTION TO INSTRUMENTATION 9 6 C01, C02, C03 Objective of instrumentation system. Block diagram of a general instrumentation system. Characteristics of ideal transducer, Classification of transducers: Active and passive transducers, Analog and digital transducers. All C01, C02 2. TRANSDUCERS 18 14 C01, C02 2.1 Construction, operation and characteristics of passive transducers: Resistive transducers: Potentiometer, strain guage, (bonded and semiconductor) RTD, Thermistor Inductive transducers: by varying self inductance, mutual inductance, eddy current. LVDT Capacitive transducers: log of distance, area, permittivity 2.2 Active transducers (principle, working and material used) Piezoelectric transducer: LDR, Photodiode, Photo transistor, Photovoltaic cell Digital transducer: Shaft encoder 21 14 C01,C02,C04 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Rague 21 14 C01,C02,C04 3.1 Displacement measurement: Biotoelectric pickup, magnetic pickup Vibration measurement: Biotoelectric pickup, magnetic pickup Vibration measurement: Genomagnetic flow meter and turbine method Flow measurement: Genomagnetic flow meter and turbine meter 8 C01,C03 4.1 Signal conditioning Signal conditioning Signal conditioning Signal conditioning Signal	M = Marks Thr = Teaching hours CO = Course Objectives			
CO3CO3Objective of instrumentation system.Block diagram of a general instrumentation system.Characteristics of ideal transducer, Classification of transducers: Active and passive transducers. Analog and digital transducers.It is in the construction of transducers.2. TRANSDUCERS1814CO1, CO22.1 Construction, operation and characteristics of passive transducers: Resistive transducers: Potentiometer, strain guage, (bonded and semiconductor) RTD, Thermistor Inductive transducers: varying of distance, area, permittivity 2.2. Active transducers (principle, working and material used) Piezoelectric transducer Photoolectric transducers: LDR, Photodiode, Photo transistor, Photovoltaic cell Digital transducers: Shaft encoder14C01,CO2, CO43. TRANSDUCER APPLICATIONS2114C01,CO2, CO43.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup, magnetic pickup Vibration measurement: photoelectric pickup, magnetic pickup Vibration measurement: photoelectric pickup, magnetic pickup Vibration measurement: electromagnetic flow meter and turbine meter188CO1,CO34.1 Signal Conditioning: Significance of DC & AC amplifiers, Instrumentation amplifier. Filters: Concept, significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTD 4.2 Data presentation elements: Digital display: Advantages and comparison of LED and LCD. Pioters: Strip chart recorder, XY plotter.96CO1, CO35. APPLCATION OF INSTRUMENTATION SYSTEM96CO1	Unit	Μ	Thr	CO
instrumentation system. Characteristics of ideal transducer, Classification of transducers: Active and passive transducers, Analog and digital transducers. 2. TRANSDUCERS 18 14 CO1, CO2 2.1 Construction, operation and characteristics of passive transducers: Resistive transducers: Potentiometer, strain guage, (bonded and semiconductor) RTD, Thermistor Inductive transducers: by varying self inductance, mutual inductance, eddy current LVDT Capacitive transducers: varying of distance, area, permittivity 2.2 Active transducers (principle, working and material used) Piezoelectric transducers Thermocouple Photoelectric transducers: LDR, Photodiode, Photo transistor, Photovoltaic cell Digital transducers: Shaft encoder 3. TRANSDUCER APPLICATIONS 21 14 CO1,CO2, CO4 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup, magnetic pickup Vibration measurement: piezoelectric accelerometer 4. SIGNAL CONDITIONING AND DATA PRESENTATION 18 8 CO1, CO3 4.1 Signal Conditioning: Need for signal conditioning Significance, fignificance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTD 4.2 Data presentation elements: Digital display: Advantages and comparison of LED and LCD. Pioters: Strip chart recorder, XY plotter. 5. APPLICATION FINSTRUMENTATION SYSTEM 9 6 CO1, CO3 5.1 Block diagram, working and applications of Data acquisition system SCADA Process control	1. INTRODUCTION TO INSTRUMENTATION	9	6	CO1, CO2, CO3
Characteristics of ideal transducer, Classification of transducers: Active and passive transducers, Analog and digital transducers. 18 14 CO1, CO2 2. TRANSDUCERS 18 14 CO1, CO2 2.1 Construction, operation and characteristics of passive transducers: 18 14 CO1, CO2 2.1 Construction, operation and characteristics of passive transducers: 18 14 CO1, CO2 2.1 Construction, operation and characteristics of passive transducers: 14 CO1, CO2 Inductive transducers: by varying self inductance, mutual inductance, eddy current. LVDT 14 CO1, CO2 Capacitive transducers (principle, working and material used) 14 CO1, CO2, CO4 Piezoelectric transducer 14 CO1, CO2, CO4 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. 14 CO1, CO2, CO4 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. 14 CO1, CO2, CO4 3.1 Displacement measurement: biotoelectric pickup, magnetic pickup 14 CO1, CO3 14.1 Signal Conditioning: 18 8 CO1, CO3 15.2 Pressure measurement: Float operated, resistive method, capacitive method Flow measurement: Float operated, resistive me	Objective of instrumentation system, Block diagram of a general			
and passive transducers, Analog and digital transducers. 18 14 CO1, CO2 2. TRANSDUCERS 18 14 CO1, CO2 2.1 Construction, operation and characteristics of passive transducers: Resistive transducers: Potentiometer, strain guage, (bonded and semiconductor) RTD, Thermistor 1 Inductive transducers: by varying self inductance, mutual inductance, eddy current. LVDT Capacitive transducers: varying of distance, area, permittivity 2.2 2.1 Co1, CO2 2.2 Active transducers (principle ,working and material used) Piezoelectric transducer Piezoelectric transducer Photoelectric transducers: LDR, Photodiode, Photo transistor, Photovoltaic cell Piezoelectric transducers. CO1, CO2, CO4 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: piezoelectric accelerometer 3.2 Pressure measurement: fieat and turbine meter 4. SIGNAL CONDITIONING AND DATA PRESENTATION 18 8 CO1, CO3 4.1 Signal Conditioning Significance of DC & AC amplifiers, Instrumentation amplifier. Filters: Concept, significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and Band pass filters Basic bridge circuits for strain gauge and Band pass filters Basic bridge circuits for strain gauge and Band pass filters Basic bridge circuits for strain gauge and Band pass filters Bas	instrumentation system.			
2. TRANSDUCERS 18 14 CO1, CO2 2.1 Construction, operation and characteristics of passive transducers: Resistive transducers: Nethods (Construction, operation and characteristics of passive transducers, eddy current, LVDT Nethods (Construction, operation, and characteristics) Capacitive transducers: varying of distance, area, permittivity 2.2 Active transducers: varying of distance, area, permittivity Nethods (Construction, operation, and material used) Piezoelectric transducers: LDR, Photodiode, Photo transistor, Photovoltaic cell Photovoltaic cell Nethods (Construct, and inductive transducers. Angular speed measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Nethods (Construct, and inductive transducers. Nethods (Construct, and inductive transducers. Angular speed measurement: plezoelectric pickup, magnetic pickup Vibration measurement: plezoelectric accelerometer Nethods (Construct, and inductive flow meter and turbine meter 4. SIGNAL CONDITIONING AND DATA PRESENTATION 18 8 CO1, CO3 4.1 Signal Conditioning: Nethods (Construct, Staff acce, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters	Characteristics of ideal transducer, Classification of transducers: Active			
2.1 Construction, operation and characteristics of passive transducers: Resistive transducers: Potentiometer, strain guage, (bonded and semiconductor) RTD, Thermistor Inductive transducers: by varying self inductance, mutual inductance, eddy current. LVDT Capacitive transducers: varying of distance, area, permittivity 2.2 Active transducers: principle ,working and material used) Piezoelectric transducer Thermocouple Photoelectric transducers: LDR, Photodiode, Photo transistor, Photovoltaic cell Digital transducer: Shaft encoder 21 14 C01,C02, C04 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. 21 14 C01,C02, C04 3.1 Displacement measurement: biotoelectric pickup, magnetic pickup Vibration measurement: diaphragm with strain gauge 2 Level measurement: Elocolectric accelerometer 3.2 Pressure measurement: diaphragm with strain gauge 2 4.1 Signal Conditioning: Need for signal conditioning 8 C01, C03 Need for signal conditioning: Need for signal conditioning 2 2 Need for signal conditioning Significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters 2 2 Alta Significance, circuit (using passine of DLED and LCD. Plotters: Strip chart recorde	· · · · ·			
Resistive transducers: Potentiometer, strain guage, (bonded and semiconductor) RTD, Thermistor semiconductor) RTD, Thermistor Inductive transducers: by varying self inductance, mutual inductance, eddy current. LVDT Capacitive transducers: varying of distance, area, permittivity 2.2 Active transducers: varying of distance, area, permittivity 2.1 2.4 Active transducers: (principle ,working and material used) Piezoelectric transducer Piezoelectric transducers: LDR, Photodiode, Photo transistor, Photovoltaic cell 21 14 CO1,CO2, CO4 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. 21 14 CO1,CO2, CO4 3.1 Displacement measurement: biotoelectric pickup, magnetic pickup Vibration measurement: piezoelectric accelerometer 21 14 CO1,CO2, CO4 3.2 Pressure measurement: diaphragm with strain gauge Level measurement: Piezoelectric accelerometer 2.1 18 8 CO1, CO3 4.1 Signal Conditioning: Need for signal conditioning: Need for signal conditioning 18 8 CO1, CO3 4.2 Data presentation elements: Ising passive components only) and characteristics of low pass, high pass and band pass filters 2 2 2 2 2 2 2 2 2 2		18	14	CO1, CO2
2.2 Active transducers (principle ,working and material used) Piezoelectric transducer Piezoelectric transducers LDR, Photodiode, Photo transistor, Photoolaic cell Digital transducer: Shaft encoder 3. TRANSDUCER APPLICATIONS 21 14 C01,C02, C04 3.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup Mibration measurement: piezoelectric accelerometer 21 14 C01,C02, C04 3.2 Pressure measurement: biozoelectric accelerometer 3.2 Pressure measurement: giezoelectric accelerometer 21 18 8 C01, C03 4.1 Signal Conditioning: Need for signal conditioning Significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters 8 C01, C03 9 6 C01, C03 5.1 Block diagram, working and applications of LED and LCD. Plotters: Strip chart recorder, XY plotter. 9 6 C01, C03 5.1 Block diagram, working and applications of Data acquisition system SCADA Process control 9 6 C01, C03	Resistive transducers: Potentiometer, strain guage, (bonded and semiconductor) RTD, Thermistor Inductive transducers: by varying self inductance, mutual inductance, eddy current. LVDT			
Piezoelectric transducer Image: Constraint of the system of the syst				
Thermocouple Photoelectric transducers: LDR, Photodiode, Photo transistor, Photovoltaic cell Digital transducer: Shaft encoder2114CO1,CO2, CO43. TRANSDUCER APPLICATIONS2114CO1,CO2, CO43.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup, magnetic pickup Vibration measurement: piezoelectric accelerometer2114CO1,CO2, CO43.2 Pressure measurement: diaphragm with strain gauge Level measurement: electromagnetic flow meter and turbine meter4. SIGNAL CONDITIONING AND DATA PRESENTATION Isignal Conditioning: Need for signal conditioning Significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTD8CO1, CO34.2 Data presentation elements: Digital display: Advantages and comparison of LED and LCD. Plotters: Strip chart recorder, XY plotter.96CO1, CO35.1 Block diagram, working and applications of Data acquisition system SCADA Process control96CO1, CO3				
Photoelectric Photovoltaic cell Digital transducer: Shaft encoderLDR, Photodiode, Photo transistor, Photovoltaic cellCO1,CO2, CO43. TRANSDUCER APPLICATIONS2114C01,CO2, CO43.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup, magnetic pickup Vibration measurement: piezoelectric accelerometerImage: Co1,CO2, CO43.2 Pressure measurement: diaphragm with strain gauge Level measurement: electromagnetic flow meter and turbine meterImage: Co1,CO34. SignAL CONDITIONING AND DATA PRESENTATION188CO1,CO34.1 Signal Conditioning: Need for signal conditioning Significance of DC & AC amplifiers, Instrumentation amplifier. Filters: Concept, significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Co1,CO34.2 Data presentation elements: Digital display: Advantages and comparison of LED and LCD. Plotters: Strip chart recorder, XY plotter.96C01,CO35.1 Block diagram, working and applications of Data acquisition system SCADA Process control96C01,CO3	Piezoelectric transducer			
Photovoltaic cell Digital transducer: Shaft encoder2114CO1,CO2, CO43. TRANSDUCER APPLICATIONS2114CO1,CO2, CO43.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup, magnetic pickup Vibration measurement: picoelectric accelerometer43.2 Pressure measurement: biotoelectric concenter5.1 Block diagram, working and applications of Data acquisition system SCADA Process control1886CO1, CO3	Thermocouple			
Digital transducer: Shaft encoderCO1,CO2, CO43. TRANSDUCER APPLICATIONS2114CO1,CO2, CO43.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup, magnetic pickup Vibration measurement: photoelectric accelerometer				
3. TRANSDUCER APPLICATIONS2114CO1,CO2,CO43.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: piezoelectric pickup, magnetic pickup Vibration measurement: piezoelectric accelerometer4CO1,CO2,CO43.2 Pressure measurement: diaphragm with strain gauge Level measurement: Float operated, resistive method, resistive, and comparison of LED and LCD.188CO1, CO34.2 Data presentation elements: Digital display: Advantages and comparison of LED and LCD. Plotters: Strip chart recorder, XY plotter.96CO1, CO35.1 Block diagram, working and applications of Data acquisition system SCADA Process control96CO1, CO3				
CO43.1 Displacement measurement: linear and angular displacement using resistive, capacitive, and inductive transducers. Angular speed measurement: piezoelectric pickup, magnetic pickup Vibration measurement: piezoelectric accelerometerImage: CO43.2 Pressure measurement: piezoelectric accelerometerImage: Colored accelerometerImage: Colored accelerometer3.2 Pressure measurement: Float operated, resistive method, capacitive method 		01	14	CO1 CO2
resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup, magnetic pickup Vibration measurement: piezoelectric accelerometer 3.2 Pressure measurement: diaphragm with strain gauge Level measurement: Float operated, resistive method, capacitive method Flow measurement: electromagnetic flow meter and turbine meter 4. SIGNAL CONDITIONING AND DATA PRESENTATION 18 8 CO1, CO3 4.1 Signal Conditioning: Need for signal conditioning Significance of DC & AC amplifiers, Instrumentation amplifier. Filters: Concept, significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTD 4.2 Data presentation elements: Digital display: Advantages and comparison of LED and LCD. Plotters: Strip chart recorder, XY plotter. 5. APPLICATION OF INSTRUMENTATION SYSTEM 9 6 CO1, CO3 5.1 Block diagram, working and applications of Data acquisition system SCADA Process control		21	14	
3.2 Pressure measurement: diaphragm with strain gauge Level measurement: Float operated, resistive method, capacitive method Flow measurement: electromagnetic flow meter and turbine meterImage: Comparison of Comparison of Comparison of LED and LCD.4. SIGNAL CONDITION OF INSTRUMENTATION SYSTEM965. APPLICATION OF INSTRUMENTATION SYSTEM965.1 Block diagram, working and applications of Data acquisition system SCADA Process controlImage: Comparison of LED and LCD.5. APPLICATION OF INSTRUMENTATION SYSTEM96	resistive, capacitive, and inductive transducers. Angular speed measurement: photoelectric pickup, magnetic pickup			
4. SIGNAL CONDITIONING AND DATA PRESENTATION188CO1, CO34.1 Signal Conditioning: Need for signal conditioning Significance of DC & AC amplifiers, Instrumentation amplifier. Filters: Concept, significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Concept description of the concept description of the concept description of LED and LCD. Plotters: Strip chart recorder, XY plotter.Image: Concept description of the concept description description of the concept description description of the concept description description description of the concept description descript	3.2 Pressure measurement: diaphragm with strain gauge Level measurement: Float operated, resistive method, capacitive method			
4.1 Signal Conditioning: Need for signal conditioning Significance of DC & AC amplifiers, Instrumentation amplifier. Filters: Concept, significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Concept concep		18	8	CO1. CO3
Need for signal conditioning Significance of DC & AC amplifiers, Instrumentation amplifier.Image: Concept significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Concept significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Concept significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Concept significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Concept significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Concept significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTDImage: Concept significance, circuit (using passive components only) and comparison of LED and LCD. Plotters: Strip chart recorder, XY plotter.Image: Concept significance, circuit (using passive components only)5.1 Block diagram, working and applications of Data acquisition system SCADA Process controlImage: Concept significance, circuit significance, circ		10	0	
Digital display: Advantages and comparison of LED and LCD. Plotters: Strip chart recorder, XY plotter.96CO1, CO35. APPLICATION OF INSTRUMENTATION SYSTEM96CO1, CO35.1 Block diagram, working and applications of Data acquisition system SCADA Process control11	Need for signal conditioning Significance of DC & AC amplifiers, Instrumentation amplifier. Filters: Concept, significance, circuit (using passive components only) and characteristics of low pass, high pass and band pass filters Basic bridge circuits for strain gauge and RTD			
Plotters: Strip chart recorder, XY plotter. 9 6 CO1, CO3 5. APPLICATION OF INSTRUMENTATION SYSTEM 9 6 CO1, CO3 5.1 Block diagram, working and applications of Data acquisition system 5 Image: Colored Colo				
5. APPLICATION OF INSTRUMENTATION SYSTEM 9 6 CO1, CO3 5.1 Block diagram, working and applications of Data acquisition system 5 6 CO1, CO3 SCADA				
5.1 Block diagram, working and applications of				
Data acquisition system SCADA Process control		9	6	COI, CO3
	Data acquisition system SCADA			
		75	48	

ETAILED COURSE CONTENTS / MICRO-LESSON PLAN

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	INTRODUCTION TO INSTRUMENTATION	6	9
2	TRANSDUCERS	14	18
3	TRANSDUCER APPLICATIONS	14	21
4	SIGNAL CONDITIONING AND DATA PRESENTATION	8	18
5	APPLICATION OF INSTRUMENTATION SYSTEM	6	9
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK

No	Practical (Minimum 8)	Marks
1.	Displacement measurement using resistive transducer	
2.	Displacement measurement using inductive transducer	
3.	Displacement measurement using Capacitive Transducer	
4.	Displacement measurement using LVDT	
5.	Stress measurement using strain gauge.	
6.	Temperature measurement using resistance temperature detector	
7.	Temperature measurement using thermocouple	
8.	Speed measurement of motor using photo electric pickup/ magnetic pick	
	up.	
9.	Level measurement transducer.	
10.	Obtain characteristics of Photodiode and phototransistor.	
11.	Obtain characteristics of LDR.	
12.	Study of piezoelectric transducer.	
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Sawhney A. K.	Electrical & Electronic	Khanna Publisher
		measurement and instruments	
2	Rangan, C.S. et al	Instrumentation Devices and system	Tata Mc Graw Hill
3	Curtis Jhonson	Process control instrumentation	Pearson/Prentice hall
		Technology	
4	Kalsi H. S.	Electronic instruments and	Mc Graw Hill
		measurement	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Murty, D.V.S.	Transducers and Instrumentation	Prentice Hall India

(EL406) ELEMENTS OF COMMUNICATION SYSTEM

1. COURSE OBJECTIVES

This course will enable the students to understand the basic concepts of communication system, modulation and demodulation techniques and transmitter and receiver circuits.

Semester	IV									
Course code a	&	Periods/Week		Total	Examination Scheme					
course title		(in l	nours)	Hours	Theory		Practi	ical	Total
						Marks		Mark	S	Marks
		L	Т	Р	Н	TH	ТМ	TW	PR/OR	
(EL406)		3	-	2	5	75	25	25	-	125
ELEMENTS	OF									
COMMUNIC	ATIO									
N SYSTEM										

2. TEACHING AND EXAMINATION SCHEME

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL406.CO1: Explain basic concepts of communication system

EL406.CO2: Demonstrate working of Modulator, Demodulator, Transmitter, Receiver and Colour TV EL406.CO3: Compare various types of noise and communication techniques and equipments EL406.CO4: Discuss the use of communication techniques and equipments for given application

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation& Testing	Engg. Practices for Society ,Sustainability& Environment	Project Management	Life -long Learning
EL406.CO1	2	-	-	-	-	-	-
EL406.CO2	3	1	-	3	-	2	-
EL406.CO3	2	1	1	-	-	-	2
EL406.CO4	2	2	2	-	3	2	3

Directorate of Technical Education, Goa State

	PSO1	PSO2
EL406.CO1	2	2
EL406.CO2	3	3
EL406.CO3	2	2
EL406.CO4	2	2

5. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	Μ	Thr	СО
1 BASICS OF COMMUNICATION SYSTEM	9	5	CO1, CO3
1.1 Block diagram of communication system			
Frequency bands used in communication system			
1.2 Noise: Definition, Classification of noise (Internal & External),			
Brief Explanation of each type of External noise (Atmospheric, Industrial,			
Extraterrestrial), Brief Explanation of each type of Internal noise(Thermal			
Agitation & Partition), Definition of signal to noise ratio & noise figure			
2 MODULATION AND DEMODULATION	21	13	CO2, CO3
2.1 MODULATION: Basic definition of modulation, Need for			
modulation, Types of Modulation (AM, FM, PM)			
2.2 Amplitude Modulation: Basic principle & Waveforms, Frequency			
Spectrum for AM wave (only description with sketches), Bandwidth for			
AM wave, Definition of modulation index for AM wave			
2.3 Angle Modulation : Definition & types of Angle Modulation			
Frequency Modulation : Basic principle & Waveforms, Frequency			
Spectrum for FM wave (only description with sketches), bandwidth for			
FM wave, Definition of modulation index for FM wave, Pre-emphasis and			
De-emphasis			
2.4 Phase Modulation : definition and mathematical expression			
Comparison between AM,FM & PM			
2.5 DEMODULATION: Basic definition of demodulation, Detection of			
AM Waves using Envelope detector and simple diode detector, Detection			
of FM wave using Balanced slope detector			
3 TRANSMITTERS AND RECEIVERS	12	08	CO1, CO2
3.1TRANSMITTERS: Block diagram of AM Transmitter-Low level and			
high level, Block diagram of FM stereophonic broadcast transmitter			
3.2 RECEIVERS:			
AM Receivers : Block diagram & Operation of TRF receiver, Block			
diagram & operation of Super heterodyne Receiver, AGC- need of AGC &			
Types of AGC (Simple, ideal & delayed)			
FM Receiver: Block diagram & operation FM Stereophonic receiver			
4 TV SYSTEMS AND ANTENNAS	24	16	CO1, CO2, CO3
4.1 Concept of scanning and synchronization and its need in TV system,			
Controls of TV receiver, TV standards for 625 line TV system, Basic			
principle of TV camera			

4.2Block diagram for generation of colour difference signals, Block			
diagram of PAL colour television transmitter, Basic concepts and working			
of LCD and LED TV			
4.3 Antennas:			
Antenna parameters:-definitions of antenna gain, antenna resistance,			
beam width and polarization			
. Construction and radiation pattern of dipole, Yagiuda, parabolic reflector			
(horn feed) Antennas.			
5 INTRODUCTION TO MOBILE CELLULAR COMMUNICATION	9	06	CO1, CO4
5.1 Basic Cellular system- Block diagram and operation, Concept of			
frequency reuse channels			
5.2 Handoff mechanism and cell splitting, Concept of GSM and its			
architecture			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of	
		lectures	
1	BASICS OF COMMUNICATION SYSTEM	5	9
2	MODULATION AND DEMODULATION	13	21
3	TRANSMITTERS AND RECEIVERS	08	12
4	TV SYSTEMS AND ANTENNAS	16	24
5	INTRODUCTION TO MOBILE CELLULAR	06	09
	COMMUNICATION		
	Total	48	75

8 SPECIFICATION TABLE FOR TERM WORK

No	Practical	Marks
1.	Perform Amplitude Modulation on trainer kit. (Observe and draw the waveform of AM)	
2.	Perform Amplitude Demodulation on trainer kit.(Observe and draw the input waveform and output waveform)	
3.	Perform frequency modulation on trainer kit. (Observe and draw the waveform of FM).	
4.	Perform frequency demodulation on trainer kit.(Observe and draw the input waveform and output waveform)	
5.	Test the performance of Superheterodyne Receiver on trainer kit.(Observe the wave forms at various points in AM receiver)	

Directorate of Technical Education, Goa State

6.	Identification of faults in different sections of TV transmitter.	
7.	Identification of various sections of mobile handset.	
8.	Field visit to All India Radio Transmitter Station	
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Kennedy, George	Electronic & Communication	Tata McGraw Hill, India,
	and Bernard	System	ISBN:0-07-463682-0
2	Roddy Collen	Electronic communication	Prentice Hall of India
			Private India
			ISBN:81-203-0984-7
3	R. R. Gulati	Colour Television	New Age International(P)
			Limited Publishers, New
			Delhi
			ISBN:81-224-0008-6
4	William C. Y. Lee	Mobile Cellular	Tata McGraw Hill, India
		Telecommunications	ISBN-13:978-0-07-063599-
			9
			ISBN-10:0-07-063599-4