(EL302) ELECTRICAL MACHINES I

1. COURSE OBJECTIVES:

This subject enables the student to understand the working principle, construction, performance, control and applications of electrical machines such as DC Generator, DC motor & Transformers. The students get familiarized with the classification & operation of these machines.

2. TEACHING AND EXAMINATION SCHEME

Semester III Course code &	Periods/Week			Total	Examination Scheme				
course title	(in hours)		Hours	Theory Marks		Practical Marks		Total Marks	
(EL302) Electrical	L	T	P	Н	TH	TM	TW	PR/OR	
Machines I	4	-	2	6	75	25	25	_	125

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL302.CO1: Explain construction, operation and classification of DC machines and transformers

EL302.CO2: Demonstrate starting and speed control methods of DC motors, parallel operation and testing methods for transformers

EL302.CO3: Categorize losses in DC machines and Transformers and analyze performance of transformers

EL302.CO4: Determine voltage regulation and efficiency of Transformer using suitable method.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
EL302.CO1	2	-	2	3	-	3	2
EL302.CO2	2	2	2	3	2	3	2
EL302.CO3	3	3	_	3	-	3	3
EL302.CO4	3	3	1	3	3	3	3

	PSO1	PSO2
EL302.CO1	2	2
EL302.CO2	3	3
EL302.CO3	2	2
EL302.CO4	3	3

		S / MICKO-LESSON PLAN]	
	ching hours	CO = Course Objectives			
Marks Unit			N	Thr	СО
			M		
1 DC GENERATOR			15	13	CO1,CO2, CO3
1.1 Construction and wor	rking of a sin	nple loop DC Generator (including			
action of split ring and	d brushes)				
Constructional details and	d material use	ed for parts (yoke, pole-core, pole			
		armature winding, commutator,			
brushes) & their functions		<i>S</i> ,			
lap and wave winding-bas	sic diagram an	d comparison			
Definitions: back pitch,	front pitch,	, pole pitch, resultant pitch and			
commutator pitch	•				
Expression for generated	d EMF (no	derivation) & factors on which it			
depends					
1.2 Classification of DC g	generators w. 1	c. t			
i) Excitation system ii)	connection of	f field & armature winding.			
Voltage & power equation	ns of these var	rious types.			
		voltage build up in DC Shunt			
generator					
Losses and types of effic	ciencies				
2 DC MOTORS			15	13	CO 1, CO2
2.1 Principle of operation	, concept of ba	ack emf & its importance,			
Development of torque ar	nd types of tor	ques in a motor.			
Classification of DC moto	ors based on co	onnection of field & armature			
winding, their voltage & p	power equation	ns.			
2.2 Speed equation & fact	tors on which	speed depends			
methods of speed control					
(DC shunt-armature contr	ol, field contr	ol, ward leonard control)			
(DC series- armature cont					
methods) & voltage contr					
		& cumulative compound motors:			
1. speed v/s armature cu	rrent 2. torqu	e v/s armature current 3. speed v/s			
torque,					
Applications of the various					
		starter, three point & four point			
	king) Construc	ction and working of brushless DC			
motor					
3 WORKING & CONST	FRUCTION	OF TRANSFORMERS	15	13	CO1, CO3

2.1 Definition and working principle of a transformer			
3.1 Definition and working principle of a transformer, Concept of ideal & practical transformer.			
Terms related to transformer: primary & secondary, H.V & L.V, step up,			
& step down . Construction:			
Simple diagram of transformer and labelling of parts			
List & functions of: core, windings, conservator, breather, buchholz relay,			
explosion vent, bushings			
Concept of leakage flux and its importance			
Concept & comparison of core type & shell type transformers (with			
diagrams),			
Various types of insulation used in transformers: inter turn, winding to			
winding, winding to core.			
whiching, whiching to core.			
3.2 Cooling system: necessity of cooling & brief description of different			
types of cooling methods			
Working & construction of tap changer: ON load & OFF load tap changer			
EMF equation of a transformer (No Derivation)			
Transformation ratio-voltage ratio, current ratio & turns ratio (numerical)			
This community (and the community)			
4 PERFORMANCE & PARALLEL OPERATION OF	21	19	CO1, CO2,
1 7 I ENTONMANCE & LANALLEL OF ENATION OF	41	17	CO1. CO2.
TRANSFORMERS	21	19	CO1, CO2, CO3, CO4
	21	19	
TRANSFORMERS	21	19	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor	21	19	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only).	21	19	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side	21	19	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression	21	19	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation	21	19	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression	21	19	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation	21	19	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation)	21		
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation) Losses and efficiency (calculation of commercial & all day efficiency) of a transformer 4.3 Salient features of a power & distribution transformer (three phase).	21		
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation) Losses and efficiency (calculation of commercial & all day efficiency) of a transformer 4.3 Salient features of a power & distribution transformer (three phase). Conditions to be satisfied for parallel operation of transformers (Diagrams	21		
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation) Losses and efficiency (calculation of commercial & all day efficiency) of a transformer 4.3 Salient features of a power & distribution transformer (three phase). Conditions to be satisfied for parallel operation of transformers (Diagrams for single phase & three phase) and their connections	21		CO3, CO4
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation) Losses and efficiency (calculation of commercial & all day efficiency) of a transformer 4.3 Salient features of a power & distribution transformer (three phase). Conditions to be satisfied for parallel operation of transformers (Diagrams for single phase & three phase) and their connections 5 AUTOTRANSFORMERS & SPECIAL TRANSFORMERS	09	06	
TRANSFORMERS 4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation) Losses and efficiency (calculation of commercial & all day efficiency) of a transformer 4.3 Salient features of a power & distribution transformer (three phase). Conditions to be satisfied for parallel operation of transformers (Diagrams for single phase & three phase) and their connections 5 AUTOTRANSFORMERS & SPECIAL TRANSFORMERS 5.1 Construction & principle of operation of an autotransformer, its			CO3, CO4
4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation) Losses and efficiency (calculation of commercial & all day efficiency) of a transformer 4.3 Salient features of a power & distribution transformer (three phase). Conditions to be satisfied for parallel operation of transformers (Diagrams for single phase & three phase) and their connections 5 AUTOTRANSFORMERS & SPECIAL TRANSFORMERS 5.1 Construction & principle of operation of an autotransformer, its advantages & disadvantages over two winding transformer			CO3, CO4
4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation) Losses and efficiency (calculation of commercial & all day efficiency) of a transformer 4.3 Salient features of a power & distribution transformer (three phase). Conditions to be satisfied for parallel operation of transformers (Diagrams for single phase & three phase) and their connections 5 AUTOTRANSFORMERS & SPECIAL TRANSFORMERS 5.1 Construction & principle of operation of an autotransformer, its advantages & disadvantages over two winding transformer Special transformers (constructional features):welding transformer,			CO3, CO4
4.1 Operation: No load and on load operation of a transformer with phasor Diagram (practical transformer for inductive load only). Final Equivalent circuit and transfer of its parameters referred to either side (numerical) Procedure of O.C & S.C test with diagrams (numerical). 4.2 Performance: Concept & significance of voltage regulation, expression and calculation of approximate voltage regulation condition for minimum regulation.(no derivation) Losses and efficiency (calculation of commercial & all day efficiency) of a transformer 4.3 Salient features of a power & distribution transformer (three phase). Conditions to be satisfied for parallel operation of transformers (Diagrams for single phase & three phase) and their connections 5 AUTOTRANSFORMERS & SPECIAL TRANSFORMERS 5.1 Construction & principle of operation of an autotransformer, its advantages & disadvantages over two winding transformer			CO3, CO4

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of	Marks
		lectures	
1	DC GENERATORS	13	15
2	DC MOTORS	13	15
3	WORKING & CONSTRUCTION OF TRANSFORMERS	13	15
4	PERFORMANCE & PARALLEL OPERATION OF TRANSFORMERS	19	21
5	AUTOTRANSFORMERS & SPECIAL TRANSFORMERS	6	9
	Total	64	75

No	Practical (Minimum 8)	Marks
1.	To plot the O.C characteristics of a DC shunt generator and find the value of critical field resistance	
2.	To plot the external characteristics of a DC shunt generator.	
3.	Speed control of a DC shunt motor above & below normal speed.	
4.	To plot the sped torque characteristics of a DC shunt generator.	
5.	Starting a DC shunt motor using a starter and reversal of direction of rotation.	
6.	To perform Swinburne's test on a DC shunt motor to determine the various losses and calculate efficiency as a DC motor & generator.	
7.	Study of DC welding generator	
8.	Insulation resistance, polarity, phasing out & ratio test on a three phase transformer.	
9.	O.C & S.C test on a three phase transformer and calculation of equivalent circuit parameters.	
10.	Parallel operation of two single phase transformers and observation of the load sharing.	
11.	To study direct load test on a three phase transformer and measurement of its voltage regulation.	
12.	To perform back to back test on a single phase transformer to determine losses and calculate efficiency and regulation.	
13.	To study a welding transformer w. r. t:- i)construction of core, ii) placement of windings, iii)current controller & iv) cooling system.	
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	BHEL	Transformers	Tata Mcgraw
2	S.K. Bhattacharya	Electrical machinery	Tata Mcgraw
3	J. B. Gupta.	Theory & performance of Electrical Machines	S. K. Kataria & sons
4	B. L. Theraja.	Electrical Technology (Vol II)	S Chand
5	P.S. Bhimbra.	Elementary theory of electrical machines	Khanna Publishers

(EL303) ELECTRICAL MEASUREMENTS & INSTRUMENTS

1. COURSE OBJECTIVES

This subject enables students to understand the basics of measurements and the construction, operation of various electrical measuring instruments. It also enables the students to know the selection and application of electrical measuring instruments for carrying out measurements.

2. TEACHING AND EXAMINATION SCHEME

Semester III Course Code &	Periods/ Total Week Hours				Examination Scheme				
Course Title	(In Hours)			Theory Marks		Practical Marks		Total Marks	
(EL303) Electrical	L	T	P	Н	TH	TM	TW	PR/OR	
Measurements & Instruments	3	-	2	5	75	25	25	25(P)	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

EL303.CO1: Explain qualities, errors, construction and working of electrical measuring instruments.

EL303.CO2: Apply suitable method of measurement and extend the range of measuring instruments.

EL303.CO3: Compare different electrical measuring instruments.

EL303.CO4: Select the appropriate measuring instrument for a given application.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
EL303.CO1	3	1	2	1	-	2	2
EL303.CO2	3	3	3	3	1	2	2
EL303.CO3	3	3	3	3	-	1	2
EL303.CO4	3	3	3	3	2	2	2

	PSO1	PSO2
EL303.CO1	2	2
EL303.CO2	3	3
EL303.CO3	2	2
EL303.CO4	3	3

M = Marks Thr = Teaching hours CO = Course Objectives		7	
Unit	M	Thr	СО
1 FUNDAMENTALS AND PRINCIPLES OF MEASUREMENTS	15	9	CO1, CO3, CO4
1.1Need of measurement & significance of measurement.			
Qualities of instrument: sensitivity, accuracy, precision, reliability,			
reproducibility, drift, static error, true value, resolution.			
Classification of instruments: Absolute & secondary instruments,			
Indicating, recording & integrating instruments, Based on permissible			
limits of errors			
Errors: Gross error, Systematic error & Random errors			
1.2 Various effects of electric current and their use in measurement.			
Essentials of Indicating instruments: Deflecting torque, Control torque,			
Damping torque.			
Various methods of providing control torque & damping torque.			
2 AMMETER & VOLTMETER	18	12	CO1, CO2,
			CO3, CO4
2.1 Construction & Principle of operation of PMMC instrument, their			
advantages and disadvantages. Errors in PMMC type instruments.			
Construction & Principle of operation of moving iron type (attraction			
&repulsion type) instrument, their advantages and disadvantages. Errors			
in moving iron type instruments.			
Rectifier type instrument, its construction & advantages.			
Loading effect of Voltmeter.			
2.2 Extension of range of Ammeter and Voltmeter using Multiplier &			
Shunt, CT & PT.			
3 WATTMETER AND ENERGYMETER	21	15	CO1, CO2, CO4
3.1 Dynamometer type wattmeter: Construction & principle of			
operation			
Measurement of power: Three phase, 3 wire circuit by two wattmeter			
method, Phasor diagram, 3 phase, 4 wire circuits by 3 wattmeter			
method, Variation of wattmeter readings with load power factor.			
Errors in wattmeters and compensation.			
Extension of range of Wattmeter using CT and PT for single phase and			
three phase (using 2 wattmeter method).			
3.2 Induction type energy meter: Construction & principle of			
operation.(single phase)			
Extension of range of energymeter (single phase and three phase) using			
CT and PT.			
Concept & block diagram of Electronics energy meter.			
4. RESISTANCE MEASUREMENT	9	6	CO1,CO2,
			CO3, CO4
4.1 Classification of resistances			
Measurement of resistance by: Voltmeter Ammeter methods,			
Wheatstone's bridge method			
Circuit diagram and operation of Kelvin's Bridge, Kelvin's Double			
Bridge (No Derivation), Series type & shunt type ohm meter			
5 OTHER INSTRUMENTS	12	6	CO1 CO4
5 OTHER INSTRUMENTS	12	6	CO1,CO4

5.1 Construction, operation and applications of Power Factor meter:			
Electrodynamometer type (single phase)			
Construction, operation and applications of			
Frequency meter (Vibrating reed type), Phase sequence indicator			
(rotating type)			
Construction, operation and applications of Earth Tester and Meggar			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	FUNDAMENTALS AND PRINCIPLES OF	9	15
	MEASUREMENTS		
2	AMMETER & VOLTMETER	12	18
3	WATTMETER AND ENERGYMETER	15	21
4	RESISTANCE MEASUREMENT	6	9
5	OTHER INSTRUMENTS	6	12
	Total	48	75

Sr.	Practicals (Minimum eight)	Marks
No.		
1	Measurement of power by 3 ammeter method	
2	Measurement of power by 3 voltmeter method	
3	Measurement of resistance by Kelvin's Double Bridge	
4	Measurement of power in 3 phase 3 wire circuit by 2 wattmeter method	
5	Measurement of power in 3 phase 3 wire circuit by 1 wattmeter method	
6	Measurement of power in 3 phase 3 wire circuit by 3 phase wattmeter.	
7	Measurement of reactive power in 3 phase, 3 wire circuit by 1 wattmeter	
	method	
8	Measurement of energy by energy meter	
9	Extension of range of Ammeter and Voltmeter using CT & PT	
10	Extension of range of wattmeter for measurement of power in 3 phase, 3	
	wire circuit by using CT & PT	
11	Measurement of power factor using power factor meter.	
12	Connection & measurement of voltage, current, power & energy using	
	digital meters	
13	Connection & use of power analyzer	
	Total	25

9. LEARNING RESOURCES

Text Books

Sr No	AUTHOR	TITLE OF BOOKS	PUBLICATIONS
1	A. K. Sawhney	A course in Electrical & Electronic Measurements & Instrumentation	Dhanpat Rai & sons
2	S.C. Bhargava	Electrical Measuring Instruments & Measurements	B.S. Publication

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1.	Vijay Singh	Fundamentals of Electrical &	New Age
		Electronic Measurements	International(P) Ltd.
2.	N.V. Suryanarayana	Electrical Measurements &	Tata Mc Graw Hill
		Measuring Instruments	

(CC307) ELEMENTS OF MECHANICAL ENGINEERING

1. COURSE OBJECTIVES

This course will help students to acquire a basic knowledge about mechanical engineering with respect to mechanical elements, mechanical power transmission devices, engines, machinery so as to enable him to do basic job of operation and maintenance in Industries

2. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	code & Periods/Week Total Examination Scheme								
course title	(in ho	urs)		Hours	Theory	7	Practi	ical	Total
					Marks	Marks Marks		S	Marks
(CC307)	L	T	P	H	TH	TM	TW	PR/OR	
ELEMENTS OF	3	-	2	5	75	25	25	-	125
MECHANICAL									
ENGG.									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC307.CO1: Explain power transmission devices, parts of I.C. engines, boilers, pumps and refrigeration equipments

CC307.CO2: Identify various parts and uses of I.C. engines, boilers accessories and refrigeration components

CC307.CO3: Distinguish between various types of I.C. engines, boilers and pumps

CC307.CO4: Discuss the application of various types of lubricants, maintenance tools, couplings and bearings.

4. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation& Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CC307.CO1	2	1	-	3	-	3	2
CC307.CO2	2	1	-	1	-	3	2
CC307.CO3	2	3	2	1	-	3	2
CC307.CO4	3	3	3	3	3	3	3

	PSO1	PSO2
CC307.CO1	1	2
CC307.CO2	2	2
CC307.CO3	2	2
CC307.CO4	2	2

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	M	Thr	СО
1 MECHANICAL POWER TRANSMISSION	15	8	CO1, CO4
	13	0	CO1, CO4
1.1 Belt drives – classification & applications Chain drives – Power transmitting chains (Block chain, Bush roller			
chain) and their applications. Gear drives –Spur, Helical & Bevel gear drives and their applications			
Gear trains (simple & compound only) and their speed ratio.			
1.2 Couplings – rigid coupling (marine type only), flexible coupling (bush			
pin type only)			
Bearings – Definition & function of bearings, rolling and sliding contact			
bearings (their functions and applications.)			
bearings (their functions and applications.)			
2 I.C. ENGINES	18	12	CO1, CO2,
			CO3
2.1 Introduction, classification & basic engine components.			
2.2 Construction and working of 4 stroke and 2 stroke engines (petrol &			
diesel). Difference between petrol and diesel engines. Difference between			
2 stroke and 4 stroke engines. Technical terms of I.C. engines –			
Stroke volume, Compression ratio, Brake power.			
3 THERMAL ENGINEERING EQUIPMENTS & PUMPS	21	14	CO1, CO2,
			CO3
3.1 Introduction. Basic components of a thermal power station and their			
function (Condenser, Turbine, Boiler).			
3.2 Boiler – Introduction, function, classification (water tube, fire tube),			
Construction and working of Babcock & Wilcox boiler and Cochran boiler.			
Comparison between fire tube and water tube boiler. Boiler mountings and			
accessories like-, water level indicator, and super heater. Awareness to			
Indian Boiler Regulations i.e. IBR (Brief Introduction)			
3.3 Introduction, working principle, classification. Centrifugal and			
reciprocating pump -construction & working. Comparison between			
Centrifugal pump & Reciprocating pump. Technical specifications -			
power, discharge, head.			
4. REFRIGERATION & AIR CONDITIONING	12	7	CO1, CO2
4.1 Introduction, unit of refrigeration (Ton), COP, Working and operation			
of simple vapour compression system (p-h & t-s diagrams to be excluded).			
4.2 Air Conditioning- definition, working of Window and split Air			
conditioner			
5. MAINTENANCE ENGINEERING	9	7	CO1, CO4
5.1 Definition, types -preventive, breakdown and predictive maintenance.			
Necessity of lubrication. Common types of lubricants. Methods of			
lubrication – wick/drip type, grease gun, grease cup.			
5.2 Maintenance tools and their functions (no construction & working) –			
spanners (open end & ring type), screw jack, gauges, screw driver, torque			
wrench, allen key, chain pulley block.			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	MECHANICAL POWER TRANSMISSION	08	15
2	I.C. ENGINES	12	18
3	THERMAL ENGINEERING EQUIPMENTS & PUMPS	14	21
4	REFRIGERATION & AIR CONDITIONING	07	12
5	MAINTENANCE ENGINEERING	07	09
	Total	48	75

8. SPECIFICATION TABLE FOR TERM WORK

No	Practical	Marks
1.	Study of different types of gears.	
2.	Removal and mounting of belt. Checking tension in the belt.	
3.	Demonstration of mounting and removal of ball/roller bearing., Knowing	
	its bearing number	
4.	Study of petrol/diesel engine construction.	
5.	Study of petrol/diesel engine working.	
6.	Study of water tube and fire tube boiler (Babcock & Wilcox and Cochran).	
7.	Study of any one refrigeration Air conditioning equipment, method of	
	installation for AC	
8.	Study of centrifugal and reciprocating pumps and common faults in pumps	
	with their troubleshooting	
9.	Literature survey and seminar (A brief power point presentation of around	
	15 min on any topic relevant to mechanical engineering). It may be done	
	individually or in groups depending on class strength.	
	Total	25

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R.S. Khurmi	Theory of Machines	
2	R.S. Khurmi	Thermal Engineering	S. Chand
3	R.K. Rajput	Textbook of Hydraulic Machines	Laxmi
4	R.K. Rajput	Refrigeration & Air Conditioning	Laxmi
5	S.N. Bhattacharya	Installation, Servicing &	S. Chand
		Maintenance	

(CC303) CIRCUITS & NETWORKS

1. COURSE OBJECTIVES:

The course is designed to introduce students to the facts, concepts & principles of electrical & electronics engineering circuits. The course aims to develop among student understanding to analyze and test different DC &AC circuits.

2. TEACHING AND EXAMINATION SCHEME

Semester I	II								
Course code &	k Pe	riods/V	Veek	Total	Examination Scheme				
course title		(in hou	rs)	Hours	The	ory	Pra	actical	Total
					Marks		Marks		Marks
Circuits	L	T	P	H	TH	TM	TW	PR/OR	
&Networks	3	-	2	5	75	25	25	-	125
(CC303)									

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC303.CO1: Understand network concepts, theorems & resonance

CC303.CO2: Interpret the response of different RLC circuits to AC supply.

CC303.CO3: Apply various theorems to simplify resistive circuits.

CC303.CO4: Design basic electrical filters.

4. Mapping Course Outcomes with Program Outcomes

TI S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn& Testing	Engg. Practices for Society, Sustainabil ity & Environment	Project Management	Life -long Learning
CC303.CO1	3	3	2	2	1	2	2
CC303.CO2	3	3	3	3	0	2	3
CC303.CO3	3	3	3	3	1	3	3
CC303.CO4	3	3	3	3	1	2	2

	PSO1	PSO2
CC303.CO1	2	2
CC303.CO2	3	3
CC303.CO3	3	3
CC303.CO4	2	2

M = Marks Thr = Teaching hours CO = Course Objectives							
Unit	M	Th	С				
Cint	141	r	o				
1 BASIC TERMINOLOGY	6	4	1				
1.1 Definitions of circuit, network, voltage, current, power, mesh,							
loop,,node &branch, port.							
1.2 Definition of network elements							
Active & passive, Unilateral & bilateral, Linear & non linear, lumped							
& Distributed.							
1.3 Energy Source							
Voltage & Current Sources							
Concept of Ideal & practical energy source							
1.4 Series & Parallel equivalent expressions of resistors, capacitors &							
inductors.(No derivations),Simple numerical on it.			_				
2 NETWORK THEOREMS (RESISTIVE ONLY WITH DC	30	22	3				
SOURCE)							
2.1 Voltage & Current Divider theorem—Statement of theorem, simple							
numerical on it.							
2.2 Vinelantia valtage & symmet I avva Statesment of laws & simple							
2.2 Kirchhoff's voltage & current Laws-Stataement of laws & simple							
numerical on it.							
2.3 Concept of Mesh & Node analysis-Explanation of method & simple							
numerical(maximum 3 loops ,3 nodes) 2.4 Superposition Theorem- Explanation of statement of theorem &							
2.4 Superposition Theorem- Explanation of statement of theorem & simple numerical							
2.5 Thevenin's Theorem- Explanation of statement of theorem &							
simple numerical							
2.6 Maximum Power Transfer Theorem Explanation of statement of							
theorem & simple numerical,							
2.7 Star Delta transformation - Explanation of conversion from star to							
delta & vice versa, simple numerical on it							
3 AC CIRCUITS	20	10	2,1				
3.1 Response of basic R,L,C ,RL , RC,RLC elements to AC signal.		1.0					
3.2 Phasor diagrams of series RC & series RL circuits, Concept of							
impedance.							
3.3 Simple problems to find impedance, VR, VC, VL, Phase angle in above							
circuits							
3.4 Concept of series resonance Circuit .Graphical representation of							
resonance curve ,bandwidth ,half power frequencies. Problems based on							
Fr,Imax,F1,F2,Z.(Note:Resonance problems are of L4)							
3.5 Concept of Q factor, Problems to calculate Q factor.							
3.6 RC Integrater & Differentiater for sine & square wave input.							
4 NETWORKS	10	6	3				
4.1 Introduction & Applications:							
Two port networks: Symmetrical T & Pi networks	<u> </u>						
4.2 Characteristics of two port network: Characteristic impedance, short							
circuit & open circuit impedance							
42 Device tiene 8 Cincolone 1 1 7 7 7 7 (1 C T)	<u> </u>						
4.3 Derivations& Simple numerical on Zo, Zoc, Zsc (only for T type)							

5 FILTERS	9	6	4
5.1 Introduction of Filter circuits			
5.2 LPF, HPF,BPF, BRF (graphical interpretation), Constant k (LPF, HPF-T type only)			
5.3 Design formulae & numerical			
Total	75	48	

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	BasicTerminology	4	6
2	Network Theorems(Resistive circuis with DC Source)	22	30
3	AC Circuits	10	20
4	Networks	6	10
5	Filters	6	9
	Total	48	75

No	Practical	Marks
1	Verification of Ohms law and its application to series parallel Circuits	
2	Verification of KVL and KCL	
3	Verification of superposition theorem	
4	Verification of Thevenins theorem	
5	Verification of maximum power transfer theorem	
6	Study of RLC series resonance circuits	
7	RC Integrator and RC Differentiator	
8	Study of filters LPF &HPF, T & PI Type	
No	Class room Assignments	Marks
1	At-least two assignments	
2		
No	Tutorial Exercise	Marks
1	NIL	
2		
•••	Total	

Directorate of Technical Education, Goa State					

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Sudhakar	Circuits & Networks	McGrawHill
	­ammohan		Education
2	B.L.Theraja	Basic electrical eng.Vol I	S.Chand
3	Royal Signals	Handbook of Line Communication	HMSO
4	B.R.Gupta &V.Singhal	Network filters & Transmission lines	S.K.Kataria & Sons
5	Schaum Series	Electrical Circuits	McGrawHill Education

(CC309) DIGITAL ELECTRONICS

1. COURSE OBJECTIVES:

The students need to learn basic concepts of digital circuits and system which leads to design of complex digital system such as microprocessors.

The students need to know combinational and sequential circuits using digital logic fundamentals. This is the first course by which students get exposure to digital electronics world.

The students will able to

- 1. To understand various number representations and conversion between different representation in digital electronic circuits.
- 2. To introduce the students to various logic gates, SOP, POS and their minimization techniques.
- 3. To analyze logic processes and implementation of logical operations using combinational logic circuits.
- 4. To understand, analyze and design sequential circuits

2. TEACHING AND EXAMINATION SCHEME

Semester	III									
Course code &		Periods/Week			Total	Examination Scheme				
course ti	tle	(iı	n hou	rs)	Hours	The Mai	•		actical arks	Total Marks
Digital	,	L	T	P	H	TH	TM	TW	PR/OR	
Electroni CC309		03	-	02	05	75	25	25	25	150

3. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CC309.CO1: Relate the knowledge of Number Systems in Digital Applications.

CC309.CO2: Build different Sequential and Combinational Circuits.

CC309.CO3: Simplify logical problems using digital circuits.

CC309.CO4: Develop basic digital electronics circuits.

4. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentatio n & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CC309.CO1	3	2	3	3	0	0	3
CC309.CO2	3	3	3	3	3	3	3
CC309.CO3	3	3	3	3	3	0	3
CC309.CO4	3	3	3	3	2	2	3

	PSO1	PSO2
CC309.CO1	2	2
CC309.CO2	2	2
CC309.CO3	2	2
CC309.CO4	2	2

M = Thr = Teaching CO = Course]	
Marks hours Objectives			
Unit	M	Thr	CO
1 Number System	14	09	CO1
1.1 Digital and Analog Signals.	 	02	001
Definition of digital and analog signals, Comparison			
between Analog and Digital signals			
1.2 Number System:- Decimal, Binary, Hexadecimal.			
Introduction to Decimal, Binary and Hexadecimal			
Number Systems. Counting in each system. Conversion			
from one system to other.			
1.3 Codes:- introduction and importance of Codes.BCD			
code, GRAY code conversion of Gray to Binary, Binary			
to Gray, BCD to binary and Binary to BCD. Represent			
Decimal Numbers in BCD and Gray codes. ASCII code			
and its importance.			
1.4 Binary Addition (upto 4 bits), 1's complement of a			
Binary number, 2's complement of a Binary number.			
Binary Subtraction using 2's complement method.			
Addition of signed decimal numbers.	10	10	G04 G04 G04
2Combinational Circuits	19	12	CO1,CO2,CO3
2.1 Logic Gates:-			
Symbol, Expression and Truth Tables of Basic			
gates(AND,OR,NOT) and Combinational			
gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:-			
DeMorgan's Theorems, Laws of Boolean Algebra			
Duality Theorem,			
2.3Simplification of Boolean Expressions using Boolean			
Algebraic laws and by using K-Maps Techniques(upto 4			
Variables in SOP Form),			
2.4 Universal Gates:-			
Implementation of NOT,OR,AND,EXOR gates using			
NOR and NAND Gates			
2.5Adders:- Half Adder circuit using logic gates, Full			
Adder circuit using logic gates, block diagram of 4 bit			
parallel adder.			
Subtractors:- Half subtractor circuit using logic gates, Full			
Subtractor using logic gates			
2.6Combinational circuits:-			
Block diagram and Implementation using basic gates:-			
Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to			
2), Decoder(2 to 4). BCD to 7 segment Decoder driver			
(Common Cathode).	10	00	001.004
3 Flip Flops	12	08	CO1,CO2,
3.1 Definition of FlipFlop. Applications.	1		
Symbol, Truth Tables, Operation and timing diagrams of			
RS F/F using NAND gates. ,			
3.2 Symbol, Truth Tables, Operation and timing diagrams			
	•	•	

of clocked RS F/F using NAND Gates, Concept of			
Asynchronous inputs(Preset and Clear)			
3.3 Symbol, Truth Tables, Operation of Clocked D F/F			
3.4 Symbol, Truth Tables, Operation of Clocked JK F/F,			
Excitation table of JK flip flop			
3.5 Race around condition in JK F/F. Symbol, Truth			
Tables, Operation of JK master slave F/F.			
3.6 Symbol, Truth Tables, Operation of T F/F,			
4 Registers And Counters	19	12	CO1,CO2,CO4
4.1 Registers: Definition of Shift Registers, Applications			
of Registers			
Symbols and Logic block diagram of SISO,SIPO,PISO			
and PIPO Registers,			
4.2 Serial IN Serial Out Register (size of the register 4			
bits)			
Logic Diagram and Operation of SISO Register			
usingnegative edge triggered D F/F along with the Truth			
Table and Timing diagrams			
4.3 Serial IN Parallel Out Register (size of the register 4			
bits)			
Logic Diagram and Operation of SIPO Register using			
negative edge triggered D F/F along with the Truth Table			
and Timing diagrams.			
4.4 Parallel IN Serial Out Register (size of the register 4			
bits)			
Logic Diagram and Operation of PISO Register using			
negative edge triggered D F/F along with the Truth Table			
and Timing diagrams			
4.5 Parallel In Parallel Out Register (size of the register 4			
bits)			
Logic Diagram and Operation of PISO Register using			
negative edge triggered D F/F along with the Truth Table			
and Timing diagrams . Concept of Shift right, Shift left,			
Ring Counter.			
4.6 Counters: Introduction to counters, Modulus of			
counters. Count sequence, No of Flip Flops required for			
Specified counters			
4.7 Asynchronous Counters:- 4 bit UP counter using JK			
Flip Flops only and 4 bit DOWN counter using JK Flip			
Flops only.			
4.8 Synchronous Counters:- 4 bit UP counter using JK			
Flip Flops only and 4 bit DOWN counter using JK Flip			
Flops only, Decade (Mod 10) using JK Flip Flops only			
40 Design of Complete and (4 4 12)			
4.9 Design of Synchronous counters(upto 4 bit) using			
only JK Flip Flops 5 DAC and ADC and Memories	11	7	CO1,CO4
5.1 Definitions, Types of DAC and ADC(11	1	CO1,CO4
noDescription), Applications		1	
5.2 Binary Ladder Network for DAC:- Logic circuit and		4	
5.2 Dinary Educat Network for Drie. Logic circuit and		7	

operation. Simple numerical problems			
Successive Approximation ADC .:- Logic circuit and			
operation. Simple numerical problems.			
5.3Memories: Introduction, Semiconductor memories and		2	
its types –ROM,RAM,PROM, EPROM,EEPROM(only			
definition and applications)			
	75	48	
Total			

6. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies **7. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN**

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Number System	09	14
2	Combinational Circuits	12	19
3	Flip Flops	08	12
4	Registers And Counters	12	19
5	DAC and ADC	07	11
	Total	48	75

No	Practical (Perform any 8)	Marks
1.	Verification of Logic gates and Demorgan's Theorems	
2.	Universal gates (NAND and NOR)	
3.	Verification of Boolean Expression	
4.	Half Adder and Full Adder using logic gates	
5.	Half Subtractor and Full Subtractor using logic gates	
6.	MUX and D-MUX	
7.	RS F/F, D F/F and JK F/F	
8.	Assemble and Test Binary Counter/Decade counter	
9.	Assemble and test DAC using DAC0808	
10.	Assemble and test ADC using ADC0808	
	Total	25
No	Class room Assignments	
	At least 2 assignments	
No	Tutorial Exercise	Marks
1	NIL	
	Total	

9. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R.P.Jain,	Modern Digital Electronics	Fourth Edition, Tata
			McGraw-Hill
			Education.
2	Malvino & Leach,	Digital Principles and Applications	Seventh Edition,
			McGraw-Hill
			Education

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Thomas L. Floyd,	Digital Fundamentals	10th Edition, Pearson
			Education Inc, 2011
2	A.K. Maini,	Digital Electronics: Principles and	Wiley India
		Integrated Circuits	Publications